The Journal of Membrane Biology

, Volume 120, Issue 3, pp 223–232 | Cite as

Stimulation of olfactory receptors alters regulation of [Cai] in olfactory neurons of the catfish (Ictalurus punctatus)

  • Diego Restrepo
  • Ardithanne G. Boyle


Intracellular calcium was measured in single olfactory neurons from the channel catfish (Icatalurus punctatus) using the fluorescent Ca2+ indicator fura 2. In 5% of the cells, olfactory stimuli (amino acids) elicited an influx of calcium through the plasma membrane which led to a rapid transient increase in intracellular calcium concentration. Amino acids did not induce release of calcium from internal stores in these cells. Some cells responded specifically to one stimulus (l-alanine,l-arginine,l-norleucine andl-glutamate) while one cell responded to all stimuli. An increase in intracellular calcium could also be elicited in 50% of the cells by direct G-protein stimulation using aluminum fluoride. Because the fraction of cells which respond to direct G-protein stimulation is substantially larger than the fraction of cells responding to amino acids, we tested for possible damage of receptor proteins due to exposure of the olfactory neurons to papain during cell isolation. We find that pretreatment with papain does not alter specific binding ofl-alanine andl-arginine to olfactory receptor sites in isolated olfactory cilia. The results are discussed in terms of their relevance to olfactory transduction.

Key Words

olfactory transduction olfactory neurons calcium fura-2 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akeson, R.A. 1988. Primary olfactory neuron subclasses.In: Molecular Neurobiology of the Olfactory System. F.L. Margolis and T.V. Getchell, editors. pp. 297–318, Plenum, New YorkGoogle Scholar
  2. Blackmore, P.F., Exton, J.H. 1986. Studies on the hepatic calcium-mobilizing activity of aluminum fluoride and glucagon. Modulation by cAMP and phorbol myristate acetate.J. Biol. Chem. 261:11056–11063PubMedGoogle Scholar
  3. Boekhoff, I., Tarelius, E., Strotman, J., Breer, H. 1990. Rapid kinetics of second-messenger signaling in olfaction.EMBO J. 9:2453–2458PubMedGoogle Scholar
  4. Boyle, A.G., Park, Y.S., Huque, T., Bruch, R.C. 1987. Properties of phospholipase C in isolated olfactory cilia from the channel catfish (Ictalurus punctatus).Comp. Biochem. Physiol. 88B:767–775Google Scholar
  5. Bruch, R.C., Kalinoski, D.L. 1987. Interaction of GTP-binding regulatory proteins with chemosensory receptors.J. Biol. Chem. 262:2401–2404PubMedGoogle Scholar
  6. Bruch, R.C., Rulli, R.D. 1988. Ligand binding specificity of al-neutral amino acid olfactory receptor.Comp. Biochem. Physiol. 91B:535–540Google Scholar
  7. Bruch, R.C., Teeter, J.H. 1990. Cyclic AMP links amino acid chemoreceptors to ion channels in olfactory cilia.Chem. Senses 15:419–430Google Scholar
  8. Cancalon, P. 1978. Isolation and characterization of the olfactory epithelial cells of the catfish.Chem. Senses Flav. 3:381–396Google Scholar
  9. Caprio, J. 1978. Olfaction and taste in the channel catfish: An electrophysiological study of the responses to amino acids and derivatives.J. Comp. Physiol. 123:357–371Google Scholar
  10. Caprio, J., Byrd, R.P., Jr. 1984. Electrophysiological evidence for acidic, basic and neutral amino acid olfactory receptor sites in the catfish.J. Gen. Physiol. 84:403–422PubMedGoogle Scholar
  11. Chen, P.S., Jr., Toribara, T.Y., Warner, H. 1956. Microdetermination of phosphorus.Anal. Chem. 28:1756–1758Google Scholar
  12. Cobbold, P.H., Rink, T.J. 1987 Fluorescence and bioluminescence measurement of cytoplasmic free calcium.Biochem. J. 248:313–328PubMedGoogle Scholar
  13. Dubyak, G.R., Cowen, D.S., Meuller, L.M. 1988. Activation of inositol phospholipid breakdown in HL60 cells by P2-purinergic receptors for extracellular ATP.J. Biol. Chem. 263:18108–18117PubMedGoogle Scholar
  14. Duchamp, A., Revial, M.F., Holley, A., McLeod, P. 1974. Odor discrimination by frog olfactory receptors.Chem. Senses Flaw. 1:213–233Google Scholar
  15. Firestein, S., Werblin, F. 1989. Odor-induced membrane currents in vertebrate olfactory receptor neurons.Science 244:79–82PubMedGoogle Scholar
  16. Frings, S., Lindemann, B. 1988. Odorant response of isolated olfactory receptor cells is blocked by amiloride.J. Membrane Biol. 105:233–243Google Scholar
  17. Gesteland, R.C. 1971. Neural coding in olfactory receptor cells. In: Handbook of Sensory Physiology. L.M. Biedler, editor. pp 132–150. Springer-Verlag, BerlinGoogle Scholar
  18. Getchell, T.V., Shepherd, G.M. 1978. Responses of olfactory receptor cells to step pulses of odor at different concentrations in the salamander.J. Physiol. 282:521–540PubMedGoogle Scholar
  19. Graziadei, P.P.C., Monti-Graziadei, G.A. 1978. Continuous cell renewal in the olfactory system.In: Handbook of Sensory Physiology, Development of Sensory Systems. M. Jacobson, editor. pp. 55–83. Springer-Verlag, BerlinGoogle Scholar
  20. Grynkiewicz, G., Poenie, M., Tsien, R.Y. 1985. A new generation of Ca2+ indicators with greatly improved fluorescent properties.J. Biol. Chem. 260:3440–3450PubMedGoogle Scholar
  21. Huque, T., Bruch, R.C. 1986. Odorant- and guanine nucleotidestimulated phosphoinositide turnover in olfactory cilia.Biochem. Biophys. Res. Commun. 137:36–42PubMedGoogle Scholar
  22. Kalinoski, D.L., Bruch, R.C., Brand, J.G. 1987. Differential interaction of lectins with chemosensory receptors.Brain Res. 418:34–40PubMedGoogle Scholar
  23. Kolesnikov, S.S., Zhainazarov, A.B., Kosolapov, A.V. 1990. Cyclic nucleotide-activated channels in the frog olfactory receptor plasma membrane.FEBS Lett. 266:96–98PubMedGoogle Scholar
  24. Lo, Y.H., Bradley, T.M., Rhoads D.E. 1990. Distribution of Ca2+-ATPase activity in the olfactory rosette of Atlantic Salmon: Comparison with Na+, K+-ATPase and alanine receptors.Chem. Senses (in press) (Abstr.) Google Scholar
  25. Marc, S., Leiber, D., Harbon, S. 1988. Fluoroaluminates mimic muscarinic- and oxytocin-receptor-mediated generation of inositol phosphates and contraction in the intact guinea-pig myometrium.Biochem. J. 255:705–713PubMedGoogle Scholar
  26. Margolis, F.L. 1972. A brain protein unique to the olfactory bulb.Proc. Natl. Acad. Sci. USA 69:1221–1224PubMedGoogle Scholar
  27. Margolis, F.L. 1988. Molecular cloning of olfactory specific gene products. In: Molecular Neurobiology of the Olfactory System. F.L. Margolis and T.V. Getchell, editors. pp. 237–265. Plenum, New YorkGoogle Scholar
  28. Mathews, D.F. 1972. Response patterns of single neurons in the tortoise olfactory epithelium and olfactory bulb.J. Gen. Physiol. 60:166–180PubMedGoogle Scholar
  29. Maue, R.A., Dionne, V.E. 1987. Patch-clamp studies of isolated mouse olfactory receptor neurons.J. Gen. Physiol. 90:95–125PubMedGoogle Scholar
  30. McClintock, T.S., Ache, B.W. 1989. Hyperpolarizing receptor potentials in lobster olfactory receptor cells: Implications for transduction and mixture suppression.Chem. Senses 14:637–647Google Scholar
  31. Morgan, J.I. 1988. Monoclonal antibody mapping of the rat olfactory tract.In: Molecular neurobiology of the Olfactory System. F.L. margolis and T.V. Getchell, editors., pp. 269–296. Plenum, New YorkGoogle Scholar
  32. Nakamura, T., Gold, G.H. 1987. A cyclic nucleotide-gated conductance in olfactory receptor cilia.Nature 325:442–444PubMedGoogle Scholar
  33. O'Connell, R.J., Mozell, M.M. 1969. Quantitative stimulation of frog olfactory receptors.J. Neurophysiol. 32:51–63PubMedGoogle Scholar
  34. Putney, J.W., Jr., Takemura, H., Hughes, A. R., Horstman, D.A., Thastrup, O. 1988. How do inositol phosphates regulate calcium signaling?FASEB J. 3:1899–1905Google Scholar
  35. Restrepo, D., Miyamoto, T., Bryant, B.P., Teeter, J.H. 1990. Odor stimuli trigger influx of calcium into olfactory neurons of the channel catfish (Ictalurus punctatus).Science 249:1166–1168PubMedGoogle Scholar
  36. Restrepo, D., Teeter, J.H. 1990. Olfactory neurons exhibit heterogeneity in depolarization-induced calcium changes.Am. J. Physiol. 258:C1051-C1061PubMedGoogle Scholar
  37. Sicard, G., Holley, A. 1984. Receptor cell responses to odorants: Similarities and differences among odorants.Brain Res. 292:283–296PubMedGoogle Scholar
  38. Suzuki, N. 1989. Voltage-and cyclic nucleotide-gated currents in isolated olfactory receptor cells.In: Chemical, Senses: Receptor Events and Transduction in Taste and Olfaction. J.G. Brand, J.H. Teeter, R.H. Cagan and M.R. Kare, editors. Vol. 1, pp. 469–493. Marcel-Dekker, New YorkGoogle Scholar
  39. Verhaagen, J., Oestreicher, A.B., Gispen, W.H., Margolis, F.L. 1988. The expression of the growth associated protein B50 GAP43 in the olfactory system of neonatal and adult rats.J. Neurosci. 9:683–691Google Scholar
  40. Yau, K.W., Nakatani, K. 1985. Light-induced reduction of cytoplasmic free calcium in retinal rod outer segment.Nature 313:579–582PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc 1991

Authors and Affiliations

  • Diego Restrepo
    • 1
  • Ardithanne G. Boyle
    • 2
  1. 1.Monell Chemical Senses CenterPhiladelphia
  2. 2.Veterans Administration Medical CenterPhiladelphia

Personalised recommendations