Skip to main content
Log in

Anticalmodulin drugs block the sodium gating current of squid giant axons

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The effects of calmodulin (CaM) antagonists (W-7, W-5, trifluoperazine, chlorpromazine, quinacrine, diazepam, propericyazine and carmidazolium) on the sodium and potassium channels were studied on the intracellularly perfused and voltage-clamped giant axon of the squid. It was found that the drugs are more potent blockers of the sodium current than of the potassium current. The drugs also reduce the sodium gating current. The blockage of the sodium and gating current can be explained by assuming that the drugs interact with the sodium gating subunit in one of its closed states. The site of action is probably the intracellular surface of the axolemma where presumably a Ca2+-calmodulin complex can be formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asano, M., Hidaka, H. 1984. Biopharmacological properties of naphthalenesulfonamides as potent calmodulin antagonists.In: Calcium and Cell Function. Vol. 5, pp. 123–164. W.Y. Cheung, editor. Academic, New York

    Google Scholar 

  • Bezanilla, F., Armstrong, C.M. 1977. Inactivation of the sodium channel. I. Sodium current experiments.J. Gen. Physiol. 70:549–566

    PubMed  Google Scholar 

  • Bezanilla, F., Taylor, R.E., Fernandez, J.M. 1982. Distribution and kinetics of membrane dielectric polarization. I. Longterm inactivation of gating currents.J. Gen. Physiol. 79:21–40

    PubMed  Google Scholar 

  • Dillingham, M.A., Dixon, B.S., Kim, J.K., Wilson, P.D. 1986. Effect of trifluoperazine on rabbit cortical collecting tubular response to vasopressin.J. Physiol. 372:41–50

    PubMed  Google Scholar 

  • Ellisman, M.H., Porter, K.R. 1980. Microtrabecular structure of the axoplasmic matrix, visualization of cross-linking structures, and their distribution.J. Cell Biol. 87:464–479

    PubMed  Google Scholar 

  • Katz, G.M., Schwartz, T.L. 1974. Temporal control of voltage-clamped membranes: An examination of principles.J. Membrane Biol. 17:275–291

    Google Scholar 

  • Keynes, R.D., Greeff, N.G., Van Helden, D.F. 1982. The relationship between the inactivation fraction of the asymmetry current and gating of the sodium channel in the squid giant axon.Proc. R. Soc. London B 15:391–404

    Google Scholar 

  • Kobayashi, T., Tsukita, S., Tsukita, S., Yamamoto, Y., Matsumoto, G. 1986. Subaxolemmal cytoskeleton in squid giant axon. I. Biochemical analysis of microtubules, microfilaments, and their associated high-molecular-weight proteins.J. Cell Biol. 102:1699–1709

    PubMed  Google Scholar 

  • Lackington, I., Orrego, F. 1981. Inhibition of calcium-activated potassium conductance of human erythrocytes by calmodulin inhibitory drugs.FEBS Lett. 133:103–106

    PubMed  Google Scholar 

  • Matsumoto, G. 1976. Transportation and maintenance of adult squid (Doryteuthis bleekeri) for physiological studies.Biol. Bull. 150:279–285

    PubMed  Google Scholar 

  • Matsumoto, G. 1985. How to maintain squid in a laboratory tank.Biol. Sci. (Seitai no Kagaku) 36:259–261

    Google Scholar 

  • Matsumoto, G., Ichikawa, M. 1985. Kinetics of sodium activation in giant axons of squid (Doryteuthis bleekeri).Neuroscience 14:327–334

    PubMed  Google Scholar 

  • Matsumoto, G., Ichikawa, M., Tasaki, A. 1984a. Axonal microtubules necessary for generation of sodium current in squid giant axons: II. Effect of colchicine upon asymmetrical displacement current.J. Membrane Biol. 77:93–99

    Google Scholar 

  • Matsumoto, G., Ichikawa, M., Tasaki, A., Murofushi, H., Sakai, H. 1984b. Axonal microtubules necessary for generation of sodium current in squid giant axons: I. Pharmacological study on sodium current and restoration of sodium current by microtubule proteins and 260K protein.J. Membrane Biol. 77:77–91

    Google Scholar 

  • Matsumoto, G., Tsukita, S., Arai, T. 1988. Organization of the axonal cytoskeleton: Differentiation of the microtubule and actin filament arrays.In: Cell Movement. Vol. 2, pp. 335–356. F.D. Warner and J.R. McIntosh, editors. Alan R. Liss, New York

    Google Scholar 

  • Matsumoto, G., Urayama, M. 1985. Effects of calmodulin antagonists on sodium ionic and gating currents.Biophysics 25:S46

    Google Scholar 

  • McCann J.D., Welsh, M.J. 1987. Neuroleptics antagonize a calcium-activated potassium channel in airway smooth muscle.J. Gen. Physiol. 89:339–352

    PubMed  Google Scholar 

  • Moore, P.B., Dedman, J.R. 1981. Calcium-dependent protein binding to phenothiazine columns.J. Biol. Chem. 256:9663–9667

    Google Scholar 

  • Okada, Y., Yada, T., Ohno-Shosaku, T., Oiki, S. 1987. Evidence for the involvement of calmodulin in the operation of Ca-activated K channels in mouse fibroblasts.J. Membrane Biol. 96:121–128

    Google Scholar 

  • Schwarz, J.R., Spielman, R.P. 1983. Flurazepan: Effects on sodium and potassium currents in myelinated nerve fibers.Eur. J. Pharmacol. 90:359–366

    PubMed  Google Scholar 

  • Seeman, P. 1972. The membrane actions of anesthetics and tranquilizers.Pharmacol. Rev. 24:583–655

    PubMed  Google Scholar 

  • Srinivasan, Y., Elmer, L., Davis, J., Bennett, V., Angelides, K. 1988. Ankyrin and spectrin associate with voltage-dependent sodium channels in brain.Nature 333:177–180

    PubMed  Google Scholar 

  • Stimers, J.R., Bezanilla, F., Taylor, R.E. 1985. Sodium channel activation in the squid giant axon. Steady state properties.J. Gen. Physiol. 85:65–82

    PubMed  Google Scholar 

  • Stimers, J.R., Bezanilla, F., Taylor, R.E. 1987. Sodium channel gating currents. Origin of the resting phase.J. Gen. Physiol. 89:521–540

    PubMed  Google Scholar 

  • Swenson, R.P., Jr. 1982. Flurazepam interaction with sodium and potassium channels in squid giant axon.Brain Res. 241:317–322

    PubMed  Google Scholar 

  • Tanaka, T., Ohmura, T., Hidaka, H. 1982. Hydrophobic interactions of the Ca2+-calmodulin complex with calmodulin antagonists: Naphthalenesulfonamide derivatives.Mol. Pharmacol. 22:403–407

    PubMed  Google Scholar 

  • Tokuno, H., Tomita, T., Fukumitsu, T. Kume, H. 1988. Effects of calmodulin antagonists on Ca-activated K channel.Program & Abstracts for the Sixth Int. Symp. on Calcium-Binding Proteins in Health and Disease.P-107:158.

    Google Scholar 

  • Tsukita, S., Tsukita, S., Kobayashi, T., Matsumoto, G. 1986. Subaxolemmal cytoskeleton in squid giant axon. II. Morphological identification of microtubule- and microfilament-associated domains of axolemma.J. Cell Biol. 102:1710–1725

    PubMed  Google Scholar 

  • Urayama, M., Matsumoto G., 1986. Effects of calmodulin antagonists on sodium and potassium currents.Biophysics 26:S103

    Google Scholar 

  • Wise, B.C., Glass, D.B., Jen Chou, C.H., Raynor, R.L., Katoh, N., Schatzman, R.C., Turner, R.S., Kibler, R.F., Kuo, J.F. 1982. Phospholipid-sensitive Ca2+-dependent protein kinase from heart. II. Substrate specificity and inhibition by various agents.J. Biol. Chem. 257:8489–8495

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ichikawa, M., Urayama, M. & Matsumoto, G. Anticalmodulin drugs block the sodium gating current of squid giant axons. J. Membrain Biol. 120, 211–222 (1991). https://doi.org/10.1007/BF01868532

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868532

Key Words

Navigation