The Journal of Membrane Biology

, Volume 79, Issue 1, pp 19–31 | Cite as

Kinetic properties of the ATP-dependent Ca2+ pump and the Na+/Ca2+ exchange system in basolateral membranes from rat kidney cortex

  • M. P. E. van Heeswijk
  • J. A. M. Geertsen
  • C. H. van Os


Basolateral plasma membranes from rat kidney cortex have been purified 40-fold by a combination of differential centrifugation, centrifugation in a discontinuous sucrose gradient followed by centrifugation in 8% percoll. The ratio of leaky membrane vesicles (L) versus right-side-out (RO) and inside-out (IO) resealed vesicles appeared to be L∶RO∶IO=4∶3∶1. High-affinity Ca2+-ATPase, ATP-dependent Ca2+ transport and Na+/Ca2+ exchange have been studied with special emphasis on the relative transport capacities of the two Ca2+ transport systems. The kinetic parameters of Ca2+-ATPase activity in digitonin-treated membranes are:K m =0.11 μm Ca2+ andVmax=81±4 nmol Pi/min·mg protein at 37°C. ATP-dependent Ca2+ transport amounts to 4.3±0.2 and 7.4±0.3 nmol Ca2+/min·mg protein at 25 and 37°C, respectively, with an affinity for Ca2+ of 0.13 and 0.07 μm at 25 and 37°C. After correction for the percentage of IO-resealed vesicles involved in ATP-dependent Ca2+ transport, a stoichiometry of 0.7 mol Ca2+ transported per mol ATP is found for the Ca2+-ATPase. In the presence of 75mm Na+ in the incubation medium ATP-dependent Ca2+ uptake is inhibited 22%. When Na+ is present at 5mm an extra Ca2+ accumulation is observed which amounts to 15% of the ATP-dependent Ca2+ transport rate. This extra Ca2+ accumulation induced by low Na+ is fully inhibited by preincubation of the vesicles with 1mm ouabain, which indicates that (Na+−K+)-ATPase generates a Na+ gradient favorable for Ca2+ accumulation via the Na+/Ca2+ exchanger. In the absence of ATP, a Na+ gradient-dependent Ca2+ uptake is measured which rate amounts to 5% of the ATP-dependent Ca2+ transport capacity. The Na+ gradient-dependent Ca2+ uptake is abolished by the ionophore monensin but not influenced by the presence of valinomycin. The affinity of the Na+/Ca2+ exchange system for Ca2+ is between 0.1 and 0.2 μm Ca2+, in the presence as well as in the absence of ATP. This affinity is surprisingly close to the affinity measured for the ATP-dependent Ca2+ pump. Based on these observations it is concluded that in isolated basolateral membranes from rat kidney cortex the Ca2+-ATPase system exceeds the capacity of the Na+/Ca2+ exchanger four- to fivefold and it is therefore unlikely that the latter system plays a primary role in the Ca2+ homeostasis of rat kidney cortex cells.

Key Words

Ca2+-ATPase ATP-dependent Ca2+ transport Na+/Ca2+ exchange rat kidney cortex basolateral membranes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agus, Z.S., Chiu, P.J.S., Goldberg, M. 1977. Regulation of urinary calcium excretion in the rat.Am. J. Physiol. 232:F545-F549PubMedGoogle Scholar
  2. Amar-Costesec, A., Wibo, M., Thines-Sempoux, D., Beaufray, H., Berthet, J. 1974. Analytical study of microsomes and isolated subcellular membranes from rat liver IV.J. Cell Biol. 62:717–745PubMedGoogle Scholar
  3. Baker, P.F., McNaughton, P.A. 1976. Kinetics and energetics of calcium-efflux from intact squid giant axons.J. Physiol. (London) 259:103–144Google Scholar
  4. Bomsztyk, K., Wright, F.S. 1982. Contribution of diffusion to transport of calcium by renal proximal tubule.Clin. Res. 30:443AGoogle Scholar
  5. Bonting, S.L. 1970. Sodium-potassium activated adenosinetriphosphatase and cation transport.In: Membranes and Ion Transport. E.E. Bittar, editor. Vol. I, pp. 286–392. Wiley Interscience, LondonGoogle Scholar
  6. Borle, A.B. 1981. Calcium transport by kidney cells.In: Calcium and Phosphate Transport across Biomembranes. F. Bronner and M. Peterlik, editors. pp. 193–198. Academic, New YorkGoogle Scholar
  7. Borle, A.B. 1982. Effect of sodium on cellular calcium transport in rat kidney.J. Membrane Biol. 66:183–191Google Scholar
  8. Borle, A.B., Snowdowe, K.W. 1982. Measurements of intracellular free calcium in monkey kidney cells with aequorin.Science 217:252–254PubMedGoogle Scholar
  9. Boyd, S., Bryson, A., Nancollas, G.H., Torrance, K. 1965. Thermodynamics of ion association. Part XII. EGTA complexes with divalent metal ions.J. Chem. Soc. V:7353–7358Google Scholar
  10. Bruns, D.E., McDonald, J.M., Jarett, L. 1976. Energy-dependent calcium transport in endoplasmic reticulum of adipocytes.J. Biol. Chem. 251:7191–7197PubMedGoogle Scholar
  11. Carafoli, E. 1981. Ca2+ pumping systems in the plasma membrane.In: Calcium and Phosphate Transport across Biomembranes. F. Bronner and M. Peterlik, editors. pp. 9–14. Academic, LondonGoogle Scholar
  12. Caroni, P., Reinlib, L., Carafoli, E. 1980. Charge movements during Na+−Ca2+ exchange in heart sarcolemmal vesicles.Proc. Natl. Acad. Sci. USA 77:6354–6358PubMedGoogle Scholar
  13. Dahlqvist, A. 1964. Method for assay of intestinal dissacharidases.Anal. Biochem. 7:18–25Google Scholar
  14. De Smedt, H., Parys, J.B., Borghgraef, F., Wuytack, F. 1981. Calmodulin stimulation of renal (Ca2++Mg2+)-ATPase.FEBS Lett. 131:60–62PubMedGoogle Scholar
  15. De Smedt, H., Parys, J.B., Borghgraef, R., Wuytack, F. 1983. Phosphorylated intermediates of (Ca2++Mg2+)-ATPase and alkaline phosphatase in renal plasma membranes.Biochim. Biophys. Acta 728:409–418PubMedGoogle Scholar
  16. Forbush, B. 1982. Characterization of right-side-out membrane vesicles rich in (Na+−K+)-ATPase and isolated from dog kidney outer medulla.J. Biol. Chem. 257:12678–12684PubMedGoogle Scholar
  17. Friedman, N.K., Carafoli, E. 1982. ATP-dependent Ca2+-uptake in isolated hepatic plasma membrane vesicles.Ann. N.Y. Acad. Sci. 402:440–443PubMedGoogle Scholar
  18. Ghijsen, W.E.J.M., Jong, M.D. de, Os, C.H. van 1982. ATP-dependent calcium transport and its correlation with Ca2+-ATPase activity in basolateral plasma membranes of rat duodenum.Biochim. Biophys. Act 689:327–336Google Scholar
  19. Ghijsen, W.E.J.M., Jong, M.D. de, Os, C. H. van 1983. Kinetic properties of Na+/Ca2+ exchange in basolaterial plasma membranes of rat small intestine.Biochim. Biophys. Acta 730:85–94PubMedGoogle Scholar
  20. Gmaj, P., Murer, H., Carafoli, E. 1982. Localization and properties of a high-affinity (Ca2+−Mg2+)-ATPase in isolated kidney cortex plasma membranes.FEBS Lett. 144:226–230PubMedGoogle Scholar
  21. Gmaj, P., Murer, H., Kinne, R. 1979. Calcium ion transport across plasma membranes isolated from rat kidney cortex.Biochem. J. 178:549–557PubMedGoogle Scholar
  22. Grover, A.K., Kwan, C.Y., Rangachari, P.K., Daniel, E.E. 1983. Na+−Ca2+ exchange in a smooth muscle plasma membrane-enriched fraction.Am. J. Physiol. 244:C158-C165PubMedGoogle Scholar
  23. Heidrich, H-G., Kinne, R., Kinne-Saffran, E., Hannig, K. 1972. The polarity of the proximal tubule cell in rat kidney: Different surface charges for the brush-border microvilli and plasma membranes from the basal infoldings.J. Cell Biol. 54:232–245PubMedGoogle Scholar
  24. Hull, J.A., Davies, R.H., Staveley, L.A.K. 1964. Thermodynamics of the formation of complexes of nitrilotriacetic acid and bivalent cations.J. Chem. Soc. V:5422–5425Google Scholar
  25. Inui, K.-I., Okano, T., Takano, M., Kitazawa, S., Hori, R. 1981. A simple method for the isolation of basolateral plasma membrane vesicles from rat kidney cortex: Enzyme activities and some properties of glucose transport.Biochim. Biophys. Acta 647:150–154PubMedGoogle Scholar
  26. Kasson, B.G., Levin, S.R. 1981. Characterization of pancreatic islet Ca2+-ATPase.Biochim. Biophys. Acta 662:30–35PubMedGoogle Scholar
  27. Kinne, R., Schmitz, J.E., Kinne-Saffran, E. 1971. The localization of Na+−K+-ATPase in the cells of rat kidney cortex. A study on isolated plasma membranes.Pfluegers Arch. 329:191–206Google Scholar
  28. Lassiter, W.E., Gottschalk, C.W., Mylle, M. 1963. Micropuncture study of renal tubular reabsorption of calcium in normal rodents.Am. J. Physiol. 204:771–775Google Scholar
  29. Lee, C.O., Taylor, A., Windhager, E.E. 1980. Cytosolic calcium ion activity in epithelial cells ofNecturus kidney.Nature (London) 287:859–860Google Scholar
  30. Martell, A.E., Schwarzenbach, G. 1956. Adenosinephosphate und Triphosphate als Komplexbildner für Calcium und Magnesium.Helv. Chim. Acta 391:653–661Google Scholar
  31. Mircheff, A.K., Wright, E.M. 1976. Analytical isolation of plasma membranes of intestinal epithelial cells: Identification of Na,K-ATPase rich membranes and the distribution of enzyme activities.J. Membrane Biol. 28:309–333Google Scholar
  32. Moore, L., Chen, T.S., Knapp, R.H., Landon, E.J. 1975. Energy dependent calcium sequestration activity in rat liver microsomes.J. Biol. Chem. 250:4562–4568PubMedGoogle Scholar
  33. Moore, L., Fitzpatrick, D.F., Chen, T.S., Landon, E.J. 1974. Calcium pump activity of the renal plasma membrane and renal microsomes.Biochim. Biophys. Acta 345:405–418Google Scholar
  34. Murayama, Y., Morel, F., Legrimellec, C. 1972. Phosphate, calcium and magnesium transfer in proximal tubules and loops of Henle, as measured by single nephron microperfusion experiments in the rat.Pfluegers Arch. 333:1–16Google Scholar
  35. Ng, R.C.K., Peraino, R.A., Suki, W.N. 1982. Divalent cation transport in isolated tubules.Kidney Int. 22:492–497PubMedGoogle Scholar
  36. Niggli, V., Adunyah, E.S., Penniston, J.T., Carafoli, E. 1981. Purified (Ca2+−Mg2+)-ATPase of the erythrocyte membrane: Reconstitution and effect of calmodulin and phospholipids.J. Biol. Chem. 256:395–401PubMedGoogle Scholar
  37. Os, C.H. van, Ghijsen, W.E.J.M. 1983. Mechanism of active calcium transport in basolateral plasmamembranes of rat small intestinal epithelium.In: Intestinal Transport; Fundamental and Comparative Aspects. L.M. Gilles-Baillien and R. Gilles, editors. pp. 170–183. Springer-Verlag, HeidelbergGoogle Scholar
  38. Pennington, R.J. 1961. Biochemistry of dystrophic muscle (mitochondrial succinate-tetrazolium reductase and adenosine triphosphatase).Biochem. J. 80:659–654Google Scholar
  39. Philipson, K.D., Nishimoto, A.Y. 1980. Na+−Ca2+ exchange is affected by membrane potentials in cardiac sarcolemmal vesicles.J. Biol. Chem. 255:6880–6882PubMedGoogle Scholar
  40. Philipson, K.D., Nishimoto, A.Y. 1982. Na+/Ca2+-exchange in inside-out cardiac sarcolemmal vesicles.J. Biol. Chem. 257:5111–5117PubMedGoogle Scholar
  41. Reeves, J.P., Sutko, J.L. 1980. Sodium-calcium exchange activity generates a current in cardiac membrane vesicles.Science 208:1461–1464PubMedGoogle Scholar
  42. Reinlib, L., Caroni, P., Carafoli, E. 1981. Studies on heart sarcolemma vesicles of opposite orientation and the effect of ATP on the Na+/C2+ exchanger.FEBS Lett. 126:74–76PubMedGoogle Scholar
  43. Scharff, O. 1979. Comparison between measured and calculated concentrations of calcium ions in buffers.Anal. Chim. Acta 109:291–305Google Scholar
  44. Schwarzenbach, G., Anderegg, G., Schneider, W., Senn, H. 1955. Komplexone XXVI. Über die Koordinationstendenz von N-substituierter Iminodiessigsäuren.Helv. Chim. Acta 38II:1147–1170Google Scholar
  45. Sillen, L.G., Martell, A.E. 1964. Stability Constants of Metal Ion Complexes. The Chemical Society, Spec. Publ. no. 17, LondonGoogle Scholar
  46. Sottocasa, G.L., Kuylensteirna, B., Ernster, L., Bergstrand, A. 1967. An electron transport system associated with the outer membrane of liver mitochondria.J. Cell. Biol. 32:415–438PubMedGoogle Scholar
  47. Taqui Khan, M.M., Martell, A.E. 1966. Thermodynamic quantities associated with the interaction of adenosine triphosphate with metal ions.J. Am. Chem. Soc. 88I:668–671Google Scholar
  48. Ullrich, K.J., Rumrich, G., Kloss, S. 1976. Active Ca2+ reabsorption in the proximal tubule of the rat kidney. Dependence on sodium and buffer transport.Pfuegers Arch. 364:223–228Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • M. P. E. van Heeswijk
    • 1
  • J. A. M. Geertsen
    • 1
  • C. H. van Os
    • 1
  1. 1.Department of PhysiologyUniversity of NijmegenNijmegenThe Netherlands

Personalised recommendations