Skip to main content
Log in

Charge clusters and the orientation of membrane proteins

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Although hydrophobic forces probably dominate in determining whether or not a protein will insert into a membrane, recent studies in our laboratory suggest that electrostatic forces may influence the final orientation of the inserted protein. A negatively charged hepatic receptor protein was found to respond totrans-positive membrane potentials as though “electrophoresing” into the bilayer. In the presence of ligand, the protein appeared to cross the membrane and expose binding sites on the opposite side. Similarly, a positively charged portion of the peptide melittin crosses a lipid membrane reversibly in response to atrans-negative potential. These findings, and others by Date and co-workers, have led us to postulate that transmembrane proteins would have hydrophobic transmembrane segments bracketed by positively charged residues on the cytoplasmic side and negatively charged residues on the extra-cytoplasmic side. In the thermodynamic sense, these asymmetrically placed charge clusters would create a compelling preference for correct orientation of the protein, given the inside-negative potential of most or all cells. This prediction is borne out by examination of the few transmembrane proteins (glycophorin, M13 coat protein, H-2Kb, HLA-A2, HLA-B7, and mouse Ig μ heavy chain) for which we have sufficient information on both sequence and orientation.

In addition to the usual diffusion and pump potentials measurable with electrodes, the “microscopic” membrane potential reflects surface charge effects. Asymmetries in surface charge arising from either ionic or lipid asymmetries would be expected to enhance the bias for correct protein orientation, at least with respect to plasma membranes. We introduce a generalized form of Stern equation to assess surface charge and binding effects quantitatively. In the kinetic sense, dipole potentials within the membrane would tend to prevent positively charged residues from crossing the membrane to leave the cytoplasm. These considerations are consistent with the observed protein orientations. Finally, the electrostatic and hydrophobic factors noted here are combined in two hypothetical models of translocation, the first involving initial interaction of the presumptive transmembrane segment with the membrane; the second assuming initial interaction of a leader sequence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashwell, G., Morell, A.G. 1974. The role of surface carbohydrates in the hepatic recognition and transport of circulating glycoproteins.Adv. Enzymol. 41:99–128

    PubMed  Google Scholar 

  • Beeler, T., Russell, J.T., Martonosi, A. 1979. Optical probe responses on sarcoplasmic reticulum: Oxacarbocyanines as probes of membrane potential.Eur. J. Biochem. 95:579–591

    PubMed  Google Scholar 

  • Blobel, G., Dobberstein, B. 1974a. Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma.J. Cell Biol. 67:835–851

    Google Scholar 

  • Blobel, G., Dobberstein, B. 1974b. Transfer of proteins across membranes. II. Reconstitution of functional rough microsomes from heterologous components.J. Cell Biol. 67:852–862

    Google Scholar 

  • Blumenthal, R., Klausner, R.D. 1981. The interaction of proteins with black lipid membranes.Cell Surf. Rev. (in press)

  • Blumenthal, R., Klausner, R.D., Weinstein, J.N. 1980. Voltage-dependent translocation of the asialoglycoprotein receptor across lipid membranes.Nature (London) 288:333–338

    Google Scholar 

  • Blumenthal, R., Shamoo, A.E. 1979. Incorporation of transport molecules into black lipid membranes.In: The Receptors. R.D. O'Brien, editor. Vol. 1, pp. 215–245 Plenum Press, New York

    Google Scholar 

  • Bockris, O'M., Reddy, A.K.N. 1970. Modern Electrochemistry. Plenum Press, New York

    Google Scholar 

  • Bollen, I.C., Higgins, J.A. 1980. Phospholipid asymmetry in rough- and smooth-endoplasmic reticulum membranes of untreated and phenobarbital-treated rat liver.Biochem. J. 189:475–480

    PubMed  Google Scholar 

  • Coligan, J.E., Kindt, T.J., Uehara, H., Martinko, J., Nathenson, S.G. 1981. The complete primary structure of a murine transplantation antigen: A membrane-bound molecule analyzed by radiochemical techniques.Nature (London) (in press)

  • Data, T., Goodman, J.M., Wickner, W.T. 1980. Procoat, the precursor of M13 coat protein, requires an electrochemical potential for membrane insertion.Proc. Natl. Acad. Sci. USA 77:4669–4673

    PubMed  Google Scholar 

  • Date, T., Zwizinski, C., Ludmerer, S., Wickner, W. 1980. Mechanisms of membrane assembly: Effects of energy poisons on the conversion of soluble M13 coliphage procoat to membrane-bound coat protein.Proc. Natl. Acad. Sci. USA 77:827–831

    PubMed  Google Scholar 

  • Dayhoff, M.O., Hunt, L.T., Barker, W.C., Schwartz, R.M., Yeh, L.-S., Orcutt, B.C. 1981.Protein Sequence Reference Data Base. Natl. Biomed. Res. Found., Washington, D.C. March, 1981

    Google Scholar 

  • DePierre, J.W., Dallner, G. 1975. Structural aspects of the membrane of the endoplasmic reticulum.Biochim. Biophys. Acta 415:411–472

    PubMed  Google Scholar 

  • Ehrenstein, G., Lecar, H. 1977. Electrically gated ion channels in lipid bilayers.Q. Rev. Biophys. 10:1–344

    PubMed  Google Scholar 

  • Eisenberg, M., Gresalfi, T., Riccio, T., McLaughlin, S. 1979. Adsorption of monovalent cations to bilayer membranes containing negative phospholipids.Biochemistry 18:5213–5223

    PubMed  Google Scholar 

  • Engelman, D.M., Henderson, R., McLachlan, A.D., Wallace, B.A. 1980. Path of the polypeptide in bacteriorhodopsin.Proc. Natl. Acad. Sci. USA 77:2025–2027

    Google Scholar 

  • Engelman, D.M., Steitz, T.A. 1981. The spontaneous insertion of proteins into and across membranes: The helical hairpin hypothesis.Cell 23:411–422

    PubMed  Google Scholar 

  • Finkelstein, A., Rubin, L.L., Tzeng, M. 1976. Black widow spider venom: Effect of purified toxin on lipid bilayer membranes.Science 193:1009–1011

    PubMed  Google Scholar 

  • Gilbert, D.L., Ehrenstein, G. 1969. Effect of divalent cations on potassium conductance of squid axons: Determination of surface charge.Biophys. J. 9:447–463

    PubMed  Google Scholar 

  • Grahame, D.C. 1947. The electrical double layer and the theory of electrocapillarity.Chem. Rev. 41:441–501

    Google Scholar 

  • Harold, F.M., Van Brunt, J. 1977. Circulation of H+ and K+ across the plasma membrane is not obligatory for bacterial growth.Science 197:372–373

    PubMed  Google Scholar 

  • Henkart, P., Blumenthal, R. 1975. Interaction of lymphocytes with lipid bilayer membranes: A model for lymphocyte-mediated lysis of target cells.Proc. Natl. Acad. Sci. USA 72:2789–2793

    PubMed  Google Scholar 

  • Higgins, J.A., Dawson, R.M.C. 1977. Asymmetry of the phospholipid bilayer of rat liver endoplasmic reticulum.Biochim. Biophys. Acta 470:342–356

    PubMed  Google Scholar 

  • Hladky, S.B., Haydon, D.A. 1973. Membrane conductance and surface potential.Biochim. Biophys. Acta 318:464–468

    Google Scholar 

  • Hodgkin, A.L., Huxley, A.F. 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve.J. Physiol. (London) 117:500–544

    Google Scholar 

  • Inouye, M., Halegoua, S. 1980. Secretion and membrane localization of proteins inEscherichia coli.Crit. Rev. Biochem. 10:339–371

    Google Scholar 

  • Kempf, C., Klausner, R.D., Weinstein, J.N., Van Renswoude, J., Pincus, M., Blumenthal, R. 1982. Voltage-dependent transbilayer orientation of melittin.J. Biol. Chem. (in press)

  • Klausner, R.D., Bridges, K., Tsunoo, H., Blumenthal, R., Weinstein, J.N., Ashwell, G. 1980. Reconstitution of the hepatic asialoglycoprotein receptor with phospholipid vesicles.Proc. Natl. Acad. Sci. USA 77:5087–5091

    PubMed  Google Scholar 

  • Klausner, R.D., Kleinfeld, A., Hoover, R., Karnovsky, M.J. 1980. Lipid domains in membranes.J. Biol. Chem. 255:1286–1295

    PubMed  Google Scholar 

  • Marchesi, V.T., Furthmayr, H., Tomita, M. 1976. The red cell membrane.Annu. Rev. Biochem. 45:667–698

    PubMed  Google Scholar 

  • McLaughlin, A., Grathwohl, C., McLaughlin, S. 1978. The adsorption of divalent cations to phosphatidylcholine bilayer membranes.Biochim. Biophys. Acta 513:338–357

    PubMed  Google Scholar 

  • McLaughlin, S. 1977. Electrostatic potentials at membrane-solution interfaces.Curr. Top. Membr. Trans. 9:71–144

    Google Scholar 

  • McLaughlin, S., Harary, H. 1974. Phospholipid flip-flop and distribution of surface charges in excitable membranes.Biophys. J. 14:200–208

    PubMed  Google Scholar 

  • McLaughlin, S., Mulrine, N., Gresalfi, T., Vaio, G., McLaughlin, A. 1981. Adsorption of divalent cations to bilayer membranes containing phosphatidylserine.J. Gen. Physiol. 77:445–473

    PubMed  Google Scholar 

  • Michaels, D.W., Abramovitz, A.S., Hammer, C.H., Mayer, M.M. 1976. Increased ion permeability of planar lipid bilayer membranes after treatment with the C5b-9 cytolytic attack mechanism of complement.Proc. Natl. Acad. Sci. USA 73:2652–2656

    Google Scholar 

  • Miller, C., Rosenberg, R.L. 1979. Modification of a voltage-gated K+ channel from sarcoplasmic reticulum by a pronase-derived specific endopeptidase.J. Gen. Physiol. 74:457–478

    PubMed  Google Scholar 

  • Moore, L., Pastan, I. 1978. Energy-dependent calcium uptake by fibroblast microsomes.Ann. N.Y. Acad. Sci. 307:177–194

    PubMed  Google Scholar 

  • Nakashima, Y., Konigsberg, W. 1974. Reinvestigation of a region of thefd bacteriophage coat protein sequence.J. Mol. Biol. 88:598–600

    PubMed  Google Scholar 

  • Nilsson, O.S., Dallner, G. 1977a. Transverse asymmetry of phospholipids in subcellular membranes of rat liver.Biochim. Biophys. Acta 464:453–458

    PubMed  Google Scholar 

  • Nilsson, O.S., Dallner, G. 1977b. Enzyme and phospholipid asymmetry in liver microsomal membranes.J. Cell Biol. 72:568–583

    PubMed  Google Scholar 

  • Op den Kamp, J.A.F. 1979. Lipid asymmetry in membranes.Annu. Rev. Biochem. 48:47–71

    PubMed  Google Scholar 

  • Robb, R.J., Terhorst, C., Strominger, J.L. 1978. Sequence of the COOH-terminal hydrophilic region of histocompatibility antigens HLA-A2 and HLA-B7.J. Biol. Chem. 253:5319–5324

    PubMed  Google Scholar 

  • Robinson, G.B. 1975. The isolation and composition of membranes.In: Biological Membranes. D.S. Parsons, editor. p. 8. Clarendon Press, Oxford

    Google Scholar 

  • Rogers, J., Early, P., Carter, C., Calame, K., Bond, M., Hood, L., Wall, R. 1980. Two mRNAs with different 3′ends encode membrane-bound and secreted forms of immunoglobin muchain.Cell 20:303–312

    PubMed  Google Scholar 

  • Rothman, J.E., Lenard, J. 1977. Membrane asymmetry.Science 195:743–747

    PubMed  Google Scholar 

  • Schein, S.J., Colombini, M., Finkelstein, A. 1976. Reconstitution in planar lipid bilayers of a voltage-dependent anion-selective channel obtained from paramecium mitochondria.J. Membrane Biol. 30:99–120

    Google Scholar 

  • Schein, S.J., Kagan, B.L., Finkelstein, A. 1978. Colicin K+ acts by forming voltage dependent channels in phospholipid bilayer membranes.Nature (London) 276:159–163

    Google Scholar 

  • Steiner, D.F., Quinn, P.S., Chan, S.J., Marsh, J., Tager, H.S. 1980. Processing mechanisms in the biosynthesis of proteins.Ann. N.Y. Acad. Sci. 343:1–16

    PubMed  Google Scholar 

  • Sundler, R., Sarcione, S.L., Alberts, A.W., Vagelos, P.R. 1977. Evidence against phospholipid asymmetry in intracellular membranes from liver.Proc. Natl. Acad. Sci. USA 74:3350–3354

    PubMed  Google Scholar 

  • Von Heijne, G., Blomberg, C. 1979. Trans-membrane translocation of proteins: The direct transfer model.Eur. J. Biochem. 97:175–181

    PubMed  Google Scholar 

  • Waggoner, A.S. 1979. Dye indicators of membrane potential.Annu. Rev. Biophys. Bioeng. 8:47–68

    PubMed  Google Scholar 

  • Wickner, W. 1980. Assembly of proteins into membranes.Science 210:861–868

    PubMed  Google Scholar 

  • Wojtczak, L., Nalecz, M.J. 1979. Surface charge of biological membranes as a possible regulator of membrane-bound enzymes.J. Biochem. 94:99–107

    Google Scholar 

  • Zimniak, P., Racker, E. 1978. Electrogenicity of Ca++ transport catalyzed by the Ca++-ATPase from sarcoplasmic reticulum.J. Biol. Chem. 253:4631–4637

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weinstein, J.N., Blumenthal, R., van Renswoude, J. et al. Charge clusters and the orientation of membrane proteins. J. Membrain Biol. 66, 203–212 (1982). https://doi.org/10.1007/BF01868495

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868495

Key words

Navigation