Skip to main content
Log in

Effects of Ag+ on ion transport by the corneal epithelium of the rabbit

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Exposure of thein vitro rabbit corneal epithelium to Ag+ by the addition of AgNO3 (10−7–10−5)m) to the apical surface or by the use of imperfectly chlorided Ag/AgCl half-cells in Ussing-style membrane chambers, greatly increases short-circuit current and transepithelial potential. The early phase (the first 30 min) of the short-circuit current stimulation by Ag+ is linearly dependent on tear-side sodium concentration, is largely a result of a tenfold increase in net Na+ uptake and is incompletely inhibited by ouabain, suggesting that Ag+ increases cation (primarily Na+) conductance of the apical membrane. This mechanism for the Ag+ effect is supported by microelectrode experiments, wherein Ag+ depolarizes specifically the apical barrier potential and increases apical barrier conductance. A later phase in the effect (0.5–3 hr) is characterized by a gradual increase in36Cl and14C-mannitol unidirectional fluxes, by a decline in epithelial resting potential and short-circuit current, by complete ouabain inhibition and by fit to saturation kinetics with respect to Na+ concentration in the bathing media. This pahse of the effect apparently reflects a nonselective opening of the paracellular pathway in the epithelium and is rate-limited by Na+ pump activity at the basolateral membrane. Both phases are associated with swelling of the corneal stroma and may be rapidly reversed using thiol agents (reduced glutathione and dithiothreitol). The results suggest that Ag+ may be useful in the study of cation transport by epithelia and the work provides basic physiological information that is pertinent to the prophylactic use of AgNO3 in clinical ophthalmology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barsham, P.C. 1966. Specific prophylaxis of gonorrheal ophthalmia neonatorum. A review.N. Engl. J. Med. 274:731–733

    PubMed  Google Scholar 

  • Benos, D.J., Mandel, L.J., Simon, S.A. 1980. Effects of chemical group specific reagents on sodium entry and the amiloride binding site in frog skin: Evidence for separate sites.J. Membrane Biol. 56:149–158

    Google Scholar 

  • Burstein, N.L., Klyce, S.D. 1977. Electrophysiologic and morphologic effects of ophthalmic preparations on rabbit cornea epithelium.Invest. Ophthalmol. Vis. Sci. 16:899–911

    PubMed  Google Scholar 

  • Candia, O.A., Bentley, P.J., Cook, P.I. 1974. Stimulation by amphotericin B of active Na transport across amphibian cornea.Am. J. Physiol. 226:1438–1444

    PubMed  Google Scholar 

  • Cleland, W.W. 1964. Dithiothreitol, a new protective reagent for SH groups.Biochemistry 3:480–482

    Google Scholar 

  • Curran, P.F. 1972. Effect of silver ion on permeability properties of frog skin.Biochim. Biophys. Acta 288:90–97

    PubMed  Google Scholar 

  • Dawson, D.C. 1977. Na and Cl transport across the isolated turtle colon: Parallel pathways for transmural ion movement.J. Membrane Biol. 37:213–233

    Google Scholar 

  • Dikstein, S., Maurice, D.M. 1972. The metabolic basis to the fluid pump in the cornea.J. Physiol. (London) 221:29–41

    Google Scholar 

  • Donn, A., Maurice, D.M., Mills, N.L. 1959. Studies in the living cornea in vitro. II. The active transport of sodium across the epithelium.Arch. Ophthalmol. 62:748–757

    PubMed  Google Scholar 

  • Ferreira, K.T.G. 1970. The effect of Cu2+ on isolated frog skin.Biochim. Biophys. Acta 203:555–567

    PubMed  Google Scholar 

  • Frömter, E., Diamond, J. 1972. Route of passive ion permeation in epithelia.Nature, New Biol. 235:9–13

    Google Scholar 

  • Hodgkin, A., Huxley, A., Katz, B. 1952. Measurement of current-voltage relations in the membrane of the giant axon ofLoligo.J. Physiol. (London) 116:424–448

    Google Scholar 

  • Goldstein, J.H. 1971. Effects of drugs on cornea, conjunctiva, and lids.Int. Ophthalmol. Clin. 11:13–34

    PubMed  Google Scholar 

  • Grady, F.J. 1972. A rare complication of gonioscopy with the Zeiss gonioprism.Arch. Ophthalmol. 88:432–433

    PubMed  Google Scholar 

  • Gutknecht, J. 1981. Mercury (Hg2+) transport through lipid bilayer membranes.Fed. Proc. 40:568 (Abstr.)

    Google Scholar 

  • Kidder, G.W., Rehm, W.S. 1970. A model for the long time-constant transient voltage response to current in epithelial tissues.Biophys. J. 10:215–236

    PubMed  Google Scholar 

  • Klyce, S.D. 1971. Electrophysiology of the corneal epithelium. Ph.D. Thesis. Department of Physiology, Yale University, New Haven, Connecticut

    Google Scholar 

  • Klyce, S.D. 1972. Electrical profiles in the corneal epithelium.J. Physiol. (London) 226:407–429

    Google Scholar 

  • Klyce, S.D. 1975. Transport of Na, Cl, and water by the rabbit corneal epithelium at resting potential.Am. J. Physiol. 228:1446–1452

    PubMed  Google Scholar 

  • Klyce, S.D. 1976. Influence of Ag+ on epithelial transport.Biophys. J. 16:131a (Abstr.)

    Google Scholar 

  • Klyce, S.D., Neufeld, A.H., Zadunaisky, J.A. 1973. The activation of chloride transport by epinephrine and Db cyclic-AMP in the cornea of the rabbit.Invest. Ophthalmol. 12:127–139

    PubMed  Google Scholar 

  • Klyce, S.D., Wong, R.K.S. 1977. Site and mode of adrenaline action on chloride transport across the rabbit corneal epithelium.J. Physiol. (London) 266:777–799

    Google Scholar 

  • Knauf, P.A., Rothstein, A. 1971. Chemical modification of membranes. I. Effects of sulfhydryl and amino reactive reagents on anion and cation permeability of the human red blood cell.J. Gen. Physiol. 58:190–210

    PubMed  Google Scholar 

  • Koefoed-Johnsen, V., Ussing, H.H. 1958. The nature of the frog skin potential.Acta Physiol. Scand. 42:298–308

    PubMed  Google Scholar 

  • Lewis, S.A., Diamond, J.M. 1976. Na+ transport by rabbit urinary bladder, a tight epithelium.J. Membrane Biol. 28:1–40

    Google Scholar 

  • Li, J.H., de Sousa, R.C. 1976. Ag+-induced changes in Na and water permeability in amphibian skins.Experientia 32:758 (Abstr.)

    Google Scholar 

  • Lindemann, B. 1968. Resting potential of isolated beef cornea.Exp. Eye Res. 7:62–69

    PubMed  Google Scholar 

  • Lindemann, B., Voute, C. 1977. Structure and function of the epidermis.In: Frog Neurobiology. R. Llinas and W. Precht, editors. pp. 169–210. Springer-Verlag, Berlin

    Google Scholar 

  • Marshall, W.S., Klyce, S.D. 1981a. Membrane resistances in rabbit corneal epithelium.Fed. Proc. 40:370 (Abstr.)

    Google Scholar 

  • Marshall, W.S., Klyce, S.D. 1981b. Cell finder speeds impalements with microelectrodes.Pfluegers Arch. 391:258–259

    Google Scholar 

  • Maurice, D.M. 1951. The permeability to sodium ions of the living rabbit's cornea.J. Physiol. (London) 112:367–391

    Google Scholar 

  • Maurice, D.M. 1968. Cellular membrane activity in the corneal endothelium of the intact eye.Experientia 24:1094–1095

    PubMed  Google Scholar 

  • Maurice, D.M., Giardini, A.A. 1951. A simple optical apparatus for measuring the corneal thickness, and the average thickness of the human cornea.Br. J. Ophthalmol. 35:169–177

    PubMed  Google Scholar 

  • Mishima, S., Kaye, G.I., Takahashi, G.H., Kudo, T., Trenberth, S.M. 1969. The function of the corneal endothelium in the regulation of corneal hydration.In: The Cornea. Macromolecular Organization of a Connective Tissue. M.E. Langham, editor. pp. 207–235. Johns Hopkins, Baltimore

    Google Scholar 

  • Schaeffer, J.F., Preston, R.L., Curran, P.F. 1973. Inhibition of amino acid transport in rabbit intestine byp-chloromercuriphenyl sulfonic acid.J. Gen. Physiol. 62:131–146

    PubMed  Google Scholar 

  • Shapiro, B., Kollmann, G., Martin, D. 1970. The diversity of sulfhydryl groups in the human erythrocyte membrane.J. Cell. Physiol. 75:281–292

    PubMed  Google Scholar 

  • Spooner, P.M., Edelman, I.S. 1976. Stimulation of Na+ transport across the toad urinary bladder byp-chloromercuribenzene sulfonate.Biochim. Biophys. Acta 455:272–276

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klyce, S.D., Marshall, W.S. Effects of Ag+ on ion transport by the corneal epithelium of the rabbit. J. Membrain Biol. 66, 133–144 (1982). https://doi.org/10.1007/BF01868489

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868489

Key words

Navigation