Skip to main content
Log in

Stoichiometry of proton movements coupled to ATP synthesis driven by a pH gradient inStreptococcus lactis

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

An electrochemical potential difference for H+ was established across the plasma membrane of the anaerobeStreptococcus lactis by addition of sulfuric acid to cells suspended in potassium phosphate at pH 8 along with valinomycin or permeant anions. Subsequent acidification of the cell was measured by the distribution of salicyclic acid. A comparison between cells treated or untreated with the inhibitor N,N′-dicyclohexylcarbodiimide was used to reveal that portion of net proton entry attributable to a direct coupling between H+ inflow and synthesis of ATP catalyzed by the reversible proton-translocating ATPase of this microorganism. When the imposed electrochemical proton gradient was below 180–190 mV, proton entry was at the rate expected of passive flux, for both control cells and cells treated with the ATPase inhibitor. However, at higher driving force acidification of control cells was markedly accelerated, coincident with ATP synthesis, while acidification of cells treated with the inhibitor continued at the rate characteristic of passive inflow. This observed threshold (180–190 mV) was identified as the reversal potential for this H+ “pump”. Parallel measurements showed that the free energy of hydrolysis for ATP in these washed cells was 8.4 kcal/mole (370 mV). The comparison between the reversal (threshold) potential and the free energy of hydrolysis for ATP indicates a stoichiometry of 2 H+/ATP for the coupling of proton movements to ATP formation in bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ames, B.N. 1966. Assay of inorganic phosphate, total phosphate and phosphatases.Methods Enzymol. 8:115–118

    Google Scholar 

  • Blok, M.C., Gier, J. de, Deenen, L.L.M. van 1974. Kinetics of the valinomycin-induced potassium ion leak from liposomes with potassium thiocyanate enclosed.Biochim. Biophys. Acta 367:210–224

    PubMed  Google Scholar 

  • Boyer, P.D. 1975. A model for conformational coupling of membrane potential and proton translocation to ATP synthesis and to active transport.FEBS Lett. 58:1–6

    PubMed  Google Scholar 

  • Downie, J.A., Gibson, F., Cox, G.B. 1979. Membrane adenosine triphosphatases of prokaryotic cells.Annu. Rev. Biochem. 48:103–131

    PubMed  Google Scholar 

  • Drift, C., van der, Janssen, D.B., Wezenbeck, P.M.G.F. van 1978. Hydrolysis and synthesis of ATP by membrane-bound ATPase from a motileStreptococcus.Arch. Microbiol. 119:31–36

    PubMed  Google Scholar 

  • Fillingame, R.H. 1981. Biochemistry and genetics of bacterial H+-translocating ATPase.Curr. Top. Bioenerg. 11:35–106

    Google Scholar 

  • Finkelstein, A. 1976. Water and nonelectrolyte permeability of lipid bilayer membranes.J. Gen. Physiol. 68:127–135

    PubMed  Google Scholar 

  • Futai, M., Kanazawa, H. 1980. Role of subunits in proton-translocating ATPase (F0−F1).Curr. Top. Bioenerg. 10:181–215

    Google Scholar 

  • Gomez-Fernandez, J.C., Harris, D.A. 1978. A thermodynamic analysis of the interaction between the mitochondrial coupling adenosine triphosphatase and its naturally occurring inhibitor protein.Biochem. J. 176:967–975

    PubMed  Google Scholar 

  • Guidotti, G. 1979. Coupling of ion transport to enzyme activity.In: The Neurosciences 4th Study Program. F.O. Shmitt and F.G. Worden, editors. pp. 831–840. M.I.T. Press, Cambridge

    Google Scholar 

  • Guynn, R.W., Veech, R.L. 1973. The equilibrium constants of the adenosine triphosphate hydrolysis and the adenosine triphosphate-citrate lyase reactions.J. Biol. Chem. 248:6966–6972

    PubMed  Google Scholar 

  • Harold, F.M. 1977. Membranes and energy transduction in bacteria.Curr. Top. Bioenerg. 6:83–149

    Google Scholar 

  • Harold, F.M., Papineau, D. 1972. Cation transport and electrogenesis byStreptococcus faecalis. I. The membrane potential.J. Membrane Biol. 8:27–44

    Google Scholar 

  • Harold, F.M., Pavlasova, E., Baarda, J.R. 1970. A transmembrane pH gradient inStreptococcus faecalis: Origin and dissipation by proton conductors and N,N′-dicyclohexylcarbodiimide.Biochim. Biophys. Acta 196:235–244

    PubMed  Google Scholar 

  • Harris, D.A., Crofts, A.R. 1978. The initial stages of photophosphorylation. Studies using excitation by saturating, short flashes of light.Biochim. Biophys. Acta 502:87–102

    PubMed  Google Scholar 

  • Kagawa, Y. 1978. Reconstitution of the energy transformer, gate and channel: Subunit reassembly, crystalline ATPase and ATP synthesis.Biochim. Biophys. Acta 505:45–93

    PubMed  Google Scholar 

  • Kashket, E.R. 1981. Proton motive force in growingStreptococcus lactis andStaphylococcus aureus cells under aerobic and anaerobic conditions.J. Bacteriol. 146:369–376

    PubMed  Google Scholar 

  • Kashket, E.R., Wilson, T.H. 1972. Role of metabolic energy in the transport of β-galactosides byStreptococcus lactis.J. Bacteriol. 109:784–789

    PubMed  Google Scholar 

  • Kielland, J. 1937. Individual activity coefficients of ions in aqueous solutions.J. Am. Chem. Soc. 59:1675–1678

    Google Scholar 

  • Kozlov, I.A., Skulachev, V.P. 1977. H+-adenosine triphosphatase and membrane energy coupling.Biochim. Biophys. Acta 463:29–89

    PubMed  Google Scholar 

  • Lehninger, A.L., Reynafarje, B., Alexandre, A., Villalobo, A. 1980. Respiration-coupled H+ ejection by mitochondria.Ann. N. Y. Acad. Sci. 341:585–592

    PubMed  Google Scholar 

  • Maloney, P.C. 1977. Obligatory coupling between proton entry and the synthesis of adenosine 5′-triphosphate inStreptococcus lactis.J. Bacteriol. 132:564–575

    PubMed  Google Scholar 

  • Maloney, P.C. 1978. Coupling between H+ entry and ATP formation inEscherichia coli.Biochem. Biophys. Res. Commun. 83:1496–1501

    PubMed  Google Scholar 

  • Maloney, P.C. 1979. Membrane H+ conductance ofStreptococcus lactis.J. Bacteriol. 140:197–205

    PubMed  Google Scholar 

  • Maloney, P.C. 1982. Coupling between H+ entry and ATP synthesis in bacteria.Curr. Top. Membr. Transp. 16:175–193

    Google Scholar 

  • Maloney, P.C., Kashket, E.R., Wilson, T.H. 1974. A protonmotive force drives ATP synthesis in bacteria.Proc. Natl. Acad. Sci. USA 71:3896–3900

    PubMed  Google Scholar 

  • Maloney, P.C., Kashket, E.R., Wilson, T.H. 1975. Methods for studying transport in bacteria.In: Methods in Membrane Biology. E. Korn, editor. Vol. 5, pp. 1–50. Plenum Press, New York

    Google Scholar 

  • Maloney, P.C., Schattschneider, S. 1980. Voltage sensitivity of the proton-translocating adenosine 5′-triphosphatase inStreptococcus lactis.FEBS Lett. 110:337–340

    PubMed  Google Scholar 

  • Maloney, P.C., Wilson, T.H. 1975. ATP synthesis driven by a protonmotive force inStreptococcus lactis.J. Membrane Biol. 25:285–310

    Google Scholar 

  • Martin, R.G., Berberich, M.A., Ames, B.N., Davis, W.W., Goldberger, R.F., Yourno, J.D. 1971. Enzymes and intermediates of histidine biosynthesis inSalmonella typhimurium.Methods Enzymol. 17B:3–39

    Google Scholar 

  • Mason, P.W., Carbone, D.P., Cushman, R.A., Waggoner, A.S. 1981. The importance of inorganic phosphate in regulation of energy metabolism ofStreptococcus lactis.J. Biol. Chem. 256:1861–1866

    PubMed  Google Scholar 

  • Mitchell, P. 1969. Chemiosmotic coupling and energy transduction.Theor. Exp. Biophys. 2:159–216

    Google Scholar 

  • Mitchell, P. 1974. A chemiosmotic molecular mechanism for proton-translocating adenosine triphosphatases.FEBS Lett. 43:189–194

    PubMed  Google Scholar 

  • Mitchell, P. 1979. Compartmentation and communication in living systems. Ligand conduction: A general catalytic principle in chemical, osmotic and chemiosmotic reaction systems.Eur. J. Biochem. 95:1–20

    PubMed  Google Scholar 

  • Mitchell, P., Moyle, J. 1967. Acid-base titration across the membrane system of rat-liver mitochondria. Catalysis by uncouplers.Biochem. J. 104:588–600

    PubMed  Google Scholar 

  • Morowitz, H.J. 1978. Proton semiconductors and energy transduction in biological systems.Am. J. Physiol. 235:R99-R114

    PubMed  Google Scholar 

  • Nichols, J.W., Deamer, D.W. 1980. Net proton-hydroxyl permeability of large unilamellar liposomes measured by an acid-base titration technique.Proc. Natl. Acad. Sci. USA 77:2038–2042

    PubMed  Google Scholar 

  • Nichols, J.W., Hill, M.W., Bangham, A.D., Deamer, D.W. 1980. Measurement of net proton-hydroxyl permeability of large unilamellar liposomes with the fluorescent pH probe, 9-aminoacridine.Biochim. Biophys. Acta 596:393–403

    PubMed  Google Scholar 

  • Pedersen, P.L., Schwerzmann, K., Cintron, N. 1981. Regulation of the synthesis and hydrolysis of ATP in biological systems: Role of peptide inhibitors of H+-ATPases.Curr. Top. Bioenerg. 11:149–199

    Google Scholar 

  • Petty, K.M., Jackson, J.B. 1979. Two protons transferred per ATP synthesised after flash activation of chromatophores from photosynthetic bacteria.FEBS Lett. 97:367–372

    Google Scholar 

  • Rosen, B.P., Kashket, E.R. 1978. Energetics of active transport.In: Bacterial Transport. B.P. Rosen, editor. pp. 559–620. Marcel Dekker, New York

    Google Scholar 

  • Scholes, P., Mitchell, P. 1970. Acid-base titration across the plasma membrane ofMicrococcus denitrificans: Factors affecting the effective proton conductance and the respiratory rate.J. Bioenerg. 1:61–72

    PubMed  Google Scholar 

  • Smith, J.B., Sternweis, P.C. 1977. Purification of membrane attachment and inhibitory subunits of the proton translocating adenosine triphosphatase fromEscherichia coli.Biochemistry 16:306–311

    PubMed  Google Scholar 

  • Sternweis, P.C., Smith, J.B. 1980. Characterization of the inhibitory (ε) subunit of the proton-translocating adenosine triphosphatase fromEscherichia coli.Biochemistry 19:526–531

    PubMed  Google Scholar 

  • Wilson, D.M., Alderete, J.F., Maloney, P.C., Wilson, T.H. 1976. Protonmotive force as the source of energy for adenosine 5′-triphosphate synthesis inEscherichia coli.J. Bacteriol. 126:327–337

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maloney, P.C., Hansen, F.C. Stoichiometry of proton movements coupled to ATP synthesis driven by a pH gradient inStreptococcus lactis . J. Membrain Biol. 66, 63–75 (1982). https://doi.org/10.1007/BF01868482

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868482

Key words

Navigation