The Journal of Membrane Biology

, Volume 66, Issue 1, pp 9–14 | Cite as

Thiocyanate transport across fish intestine (Pleuronectes platessa)

  • U. Katz
  • K. R. Lau
  • M. M. P. Ramos
  • J. C. Ellory
Article

Summary

When bathed on both sides with identical chloride-containing salines thein vitro preparation of the plaice intestine maintains a negative (serosa to mucosa) short-circuit current of 107±11 μA/cm2, a transepithelial potential difference of 5.5±0.6 mV (serosa negative), and a mean mucosal membrane potential of −45.4±0.6 mV. Under these conditions the intracellular chloride activity is 32mm.

If chloride in the bathing media is partially, or completely substituted by thiocyanate the measured electrical parameters do not change but transepithelial flux determinations show a reduction in chloride fluxes and the presence of a significant thiocyanate flux. The addition of piretanide (10−4m) reduced the short-circuit current and the mucosa-to-serosa fluxes of chloride and thiocyanate; this inhibition is similar to the effect of piretanide on chloride transport in this tissue.

The results indicate that thiocyanate is transported in this tissue via the piretanide-sensitive “chloride” pathway and are compared with the effects of thiocyanate on other tissues reported in the literature.

Key words

thiocyanate chloride transport intestine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akaike, N. 1971. The origin of the basal cell potential in frog corneal epithelium. J. Physiol. (London)219:57–75Google Scholar
  2. Bates, R.G., Staples, B.R., Robinson, R.A. 1970. Ionic hydration and single ion activities in unassociated chlorides at high ionic strength.Anal. Chem. 42:867–871Google Scholar
  3. Bonting, S.L., Amelsvoort, J.M.M. van, Pont, J.J.H.H.M. de. 1978. Is anion sensitive ATPase a plasma membrane located transport system?Acta Physiol. Scand. Special Suppl: 329–340Google Scholar
  4. Cremaschi, D., Hénin, S., Meyer, G. 1979. Stimulation by HCO3 of Na+ transport in rabbit gallbladder.J. Membrane Biol. 47:145–170Google Scholar
  5. Davenport, H.W. 1940. The inhibition of carbonic anhydrase and of gastric acid secretion by thiocyanate.Am. J. Physiol. 129:505–514Google Scholar
  6. Degnan, K.J., Karnaky, K.J., Zadunaisky, J.A. 1977. Active chloride transport in thein vitro opercular skin of a teleost (Fundulus heteroclitus), a gill-like epithelium rich in chloride cells.J. Physiol. (London) 271:155–191Google Scholar
  7. Duffey, M.E., Thompson, S.M., Frizzell, R.A., Schultz, S.G. 1979. Intracellular chloride activities and active chloride absorption in the intestinal epithelium of the winter flounder.J. Membrane Biol. 50:331–341Google Scholar
  8. Durbin, R.P. 1964. Anion requirements for gastric acid secretion.J. Gen. Physiol. 47:735–748PubMedGoogle Scholar
  9. Epstein, F.H., Maetz, J., Renzis, G. de. 1973. Active transport of chloride by the teleost gill: Inhibition by thiocyanate.Am. J. Physiol. 224:1295–1299PubMedGoogle Scholar
  10. Forte, J.G., Davies, R.E. 1964. Relation between hydrogen ion secretion and oxygen uptake by gastric mucosa.Am. J. Physiol. 206:218–222PubMedGoogle Scholar
  11. Frizzell, R.A., Nellans, H.N., Rose, R.C., Markscheid-Kaspi, L., Schultz, S.G. 1973. Intracellular Cl concentrations and influxes across the brush border of rabbit ileum.Am. J. Physiol. 224:328–337PubMedGoogle Scholar
  12. Goldman, D.E. 1943. Potential, impedance and rectification in membranes.J. Gen. Physiol. 27:37–60Google Scholar
  13. Hogben, C.A.M. 1965. The natural history of the isolated bullfrog gastric mucosa.Fed Proc 24:1353–1359PubMedGoogle Scholar
  14. Maetz, J. 1976. Transport of ions and water across the epithelium of fish gills. In: Lung liquids. Ciba Foundation Symposium.38:133–155Google Scholar
  15. Ramos, M.M.P., Ellory, J.C. 1981. Na and Cl transport across the isolated anterior intestine of the PlaicePleuronectes platessa. J. Exp. Biol. (in press) Google Scholar
  16. Renzis, G. de. 1975. The branchial chloride pump in the goldfishCarassius auratus: Relationship between Cl/HCO3 and Cl/Cl exchange and the effect of thiocyanate.J. Exp. Biol. 63:587–602PubMedGoogle Scholar
  17. Renzis, G. de, Bornancin, M. 1977. A Cl/HCO3 ATPase in the gills ofCarassius auratus. Its inhibition by thiocyanate.Biochim. Biophys. Acta 467:192–207PubMedGoogle Scholar
  18. Sachs, G, Collier, R.H., Pacificio, A., Shoemaker, R.L., Zweig, R.A., Hirschowitz, B.I. 1969. Action of thiocyanate on gastric mucosain vitro.Biochim. Biophys. Acta 173:509–517PubMedGoogle Scholar
  19. Schulz, I. 1972. Pancreatic bicarbonate transport.In: Gastric Secretion. G. Sachs, E. Heinz, and K.J. Ullrich, editors pp. 363–379. Academic Press, New YorkGoogle Scholar
  20. Walker, J.L. 1971. Ion specific liquid ion exchanger microelectrodes.Anal. Chem. 43:89A-93AGoogle Scholar
  21. Zadunaisky, J.A. 1978. Transport in eye epithelia: The cornea and crystalline lens.In: Membrane Transport in Biology. G. Geibisch, D.C. Tosteson, and H.H. Ussing, editors Vol. 3, pp. 307–335. Springer Berlin, Heidelberg-New YorkGoogle Scholar
  22. Zadunaisky, J.A., Lande, M.A., Hafner, J. 1971. Further studies on chloride transport in the frog cornea.Am. J. Physiol. 221:1832–1836PubMedGoogle Scholar
  23. Zeuthen, T., Hiam, R.C., Silver, I.A. 1973. Microelectrode recording of ion activity in brains.In: Ion Selective Microelectrodes. H.J. Berman and N.C. Hebert, editors. Advances in Experimental Medicine and Biology. Vol. 50, pp. 145–156. Plenum Press, New YorkGoogle Scholar
  24. Zeuthen, T., Ramos, M., Ellory, J.C. 1978. Inhibition of active chloride transport by piretanide.Nature (London) 273:678–680Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1982

Authors and Affiliations

  • U. Katz
    • 1
  • K. R. Lau
    • 1
  • M. M. P. Ramos
    • 1
  • J. C. Ellory
    • 1
  1. 1.The Physiological LaboratoryUniversity of CambridgeCambridgeEngland

Personalised recommendations