The Journal of Membrane Biology

, Volume 118, Issue 2, pp 131–142 | Cite as

Activation of protein kinase C by phorbol ester induces downregulation of the Na+/K+-ATPase in oocytes ofXenopus laevis

  • L. A. Vasilets
  • G. Schmalzing
  • K. Mädefessel
  • W. Haase
  • W. Schwarz


Full-grown prophase-arrested oocytes ofXenopus laevis were treated with 50nm phorbol 12-myristate 13-acetate (PMA), an activator of protein kinase C, or with 50nm 4α-phorbol 12,13-didecanoate (4αPDD) that does not activate protein kinase C. The effects on membrane currents and capacitance, inulin uptake and ouabain binding, and on membrane morphology were analyzed.
  1. (i)

    During application of PMA, current generated by the Na+/K+ pump decreases; in addition, Cl and K+ channels become inhibited. This general decrease in membrane conductance reaches steady state after about 60 min. 4αPDD was ineffective.

  2. (ii)

    Ouabain binding experiments demonstrate that PMA (K1/2=7nm), but not 4αPPD, induces a reduction of the number of pump molecules in the surface membrane. Permeabilization of oocytes by digitonin plus 0.02% SDS renders all binding sites present prior to PMA treatment again accessible for ouabain. TheKD value for ouabain binding is not influenced. 4αPDD was ineffective.

  3. (iii)

    Exposure of oocytes to PMA reduces membrane capacitance and stimulates uptake of inulin suggesting an increase in endocytosis. Electron micrographs show that PMA reduces the number and length of microvilli, leading finally to a smooth membrane surface with a reduced surface area.


From these results we conclude that stimulation of protein kinase C leads to downregulation of the sodium pump. A major portion of this inhibition is brought about by reduction in area of surface membrane with a concomitant internalization of pump molecules. In addition to this mode of downregulation, a direct effect of stimulation of protein kinase C on the pump molecule cannot be excluded.

Key Words

Xenopus oocyte phorbol ester protein kinase C sodium pump endocytosis ouabain binding cell permeabilization electron microscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adrian, R.H., Almers, W. 1974. Membrane capacity measurements on frog skeletal muscle in media of low ion content.J. Physiol. (London) 237:573–605Google Scholar
  2. Barish, M.E. 1983. A transient calcium-dependent chloride current in the immatureXenopus oocyte.J. Physiol. (London) 342:309–325Google Scholar
  3. Barrett, A.J. 1972. Lysosomal enzymes.In: Lysosomes, a Laboratory Handbook. J.T. Dingle, editor. pp. 46–135. American Elsevier, New YorkGoogle Scholar
  4. Bement, W.M., Capco, D.G. 1989. Activators of protein kinase C trigger cortical granule exocytosis, cortical contraction, and cleavage furrow formation inXenopus laevis oocytes and eggs.J. Cell. Biol. 108:885–892Google Scholar
  5. Bertorello, A., Aperia, A. 1989. Na+−K+-ATPase is an effector protein for protein kinase C in renal proximal tubule cells.Am. J. Physiol. 256:F370-F373Google Scholar
  6. Castagna, M., Takai, Y., Kaibuchi, K., Sano, K., Kikkawa, U., Nishizuka, Y. 1982. Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters.J. Biol. Chem. 257:7847–7851Google Scholar
  7. Craig, S., Miller, C. 1984. LR White resin and improved on-grid immunogold detection of vicilin, a pea seed storage protein.Cell Biol. Int. Rep. 8:879–886Google Scholar
  8. Dascal, N., Lotan, I., Gillo, B., Lester, H.A., Lass, Y. 1985. Acetylcholine and phorbol esters inhibit potassium currents evoked by adenosine and cAMP inXenopus oocytes.Proc. Natl. Acad. Sci. USA 82:6001–6005Google Scholar
  9. De Weer, P. 1985. Cellular sodium-potassium transport.In: The Kidney: Physiology and Pathophysiology. D.W. Seldin and G. Giebisch, editors. Raven, New YorkGoogle Scholar
  10. Dumont, J.N. 1972. Oogenesis inXenopus laevis (Daudin). I. Stages of oocyte development in laboratory maintained animals.J. Morphol. 136:153–180Google Scholar
  11. Graham, R.C., Karnovsky, M.J. 1966. The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney; ultrastructural cytochemistry by a new technique.J. Histochem. Cytochem. 14:291–302Google Scholar
  12. Hootman, S.R., Brown, M.E., Williams, J.A. 1987. Phorbol esters and A23187 regulate Na+−K+-pump activity in pancreatic acinar cells.Am. J. Physiol. 252:G499–505Google Scholar
  13. Kaczmarek, L.K. 1987. The role of protein kinase C in the regulation of ion channels and neurotransmitter release.Trends Neurosci. 10:30–34Google Scholar
  14. Kado, R.T., Marcher, K., Ozon, R. 1981. Electrical membrane properties of theXenopus laevis oocyte during progesterone-induced meiotic maturation.Dev. Biol. 84:471–476Google Scholar
  15. Knight, D.E., Sugden, D., Baker, P.F. 1988. Evidence implicating protein kinase C in exocytosis from electropermeabilized bovine chromaffin cells.J. Membrane Biol. 104:21–34Google Scholar
  16. Lafaire, A.V., Schwarz, W. 1985. Voltage-dependent, ouabain-sensitive current in the membrane of oocytes ofXenopus laevis.In: The Na/K-ATPase (I. Glynn and C. Ellory, editors. pp. 523–525. Company of Biologists, CambridgeGoogle Scholar
  17. Lafaire, A.V., Schwarz, W. 1986. Voltage dependence of the rheogenic Na+/K+ ATPase in the membrane of oocytes ofXenopus laevis.J. Membrane Biol. 91:43–51Google Scholar
  18. Laurent, A., Basset, M., Dorée, M., Le Pench, C.J. 1988. Involvement of a calcium-phospholipid-dependent protein kinase in the maturation ofXenopus laevis oocytes.FEBS Lett. 226:324–330Google Scholar
  19. Ling, L., Cantley, L. 1984. The (Na,K)-ATPase of Friend erythroleukemia cells is phosphorylated near the ATP hydrolysis by an endogenous membrane-bound kinase.J. Biol. Chem. 259:4089–4095Google Scholar
  20. Lupu-Meiri, M., Shapira, H., Oron, Y. 1989. Dual regulation by protein kinase C of the muscarinic response inXenopus oocytes.Pfluegers Arch. 413:498–504Google Scholar
  21. Lynch, C.J., Wilson, P.B., Blackmore, P.F., Exton, J.H. 1986. The hormone-sensitive hepatic Na+-pump. Evidence for regulation by diacylglycerol and tumor promoters.J. Biol. Chem. 261:14551–14556Google Scholar
  22. Marx, A., Ruppersberg, J.P., Rüdel, R. 1987. Dependence of the electrogenic pump current ofXenopus oocytes on external potassium.Pfluegers Arch. 408:537–539Google Scholar
  23. Miledi, R. 1982. A calcium-dependent transient outward current inXenopus laevis oocytes.Proc. R. Soc. London B.215:491–497Google Scholar
  24. Nishizuka, Y. 1984. The role of protein kinase C in cell surface signal transduction and tumour promotion.Nature (London) 308:693–698Google Scholar
  25. Nishizuka, Y. 1986. Studies and perspectives of protein kinase C.Science 233:305–312Google Scholar
  26. Parker, I., Miledi, R. 1988a. A calcium-independent chloride current activated by hyperpolarization inXenopus oocytes.Proc. R. Soc. London B 233:191–199Google Scholar
  27. Parker, I., Miledi, R. 1988b. Transient potassium current in nativeXenopus oocytes.Proc. R. Soc. London B.234:45–53Google Scholar
  28. Peres, A., Bernardini, G. 1983. A hyperpolarization-activated chloride current inXenopus laevis oocytes under voltage-clamp.Pfluegers Arch. 399:157–159Google Scholar
  29. Peres, A., Bernardini, G., Mancinelli, E., Ferroni, A. 1985. A voltage-dependent K+ channel controlling the membrane potential in frog oocytes.Pfluegers Arch. 403:41–46Google Scholar
  30. Rakowski, R.F., Vasilets, L.A., Schwarz, W. 1990. Conditions for a negative slope in the current-voltage relationship of the Na/K pump inXenopus oocytes.Biophys. J. 57:182a Google Scholar
  31. Richter, H.-P., Jung, D., Passow, H. 1984. Regulatory changes of membrane transport and ouabain binding during progesterone-induced maturation ofXenopus oocytes.J. Membrane Biol. 79:203–210Google Scholar
  32. Robinson, K.R. 1979. Electrical currents through full-grown and maturingXenopus oocytes.Proc. Natl. Acad. Sci. USA 76:837–841Google Scholar
  33. Schmalzing, G., Eckard, P., Kröner, S., Passow, H. 1990. Down-regulation of surface sodium pumps by endocytosis during meiotic maturation ofXenopus laevis oocytes.Am. J. Physiol. 258:C179-C184Google Scholar
  34. Schmalzing, G., Kröner, S., Passow, H. 1989. Evidence for intracellular sodium pumps in permeabilizedXenopus laevis oocytes.Biochem. J. 260:395–399Google Scholar
  35. Schweigert, B., Lafaire, A. V., Schwarz, W. 1988. Voltage dependence of the Na−K ATPase: Measurements of ouabain-dependent membrane current and ouabain binding in oocytes ofXenopus laevis.Pfluegers Arch. 412:579–588Google Scholar
  36. Simionescu, N., Simionescu, M. 1976. Galloglucoses of low molecular weight as mordant in electron microscopy. I. Procedure and evidence for mordanting effect.J. Cell Biol. 70:608–621Google Scholar
  37. Spurr, A.R. 1969. A low-viscosity epoxy resin embedding medium for electron microscopy.J. Ultrastruct. Res. 26:31–43Google Scholar
  38. Stith, B.J., Maller, J.L. 1987. Induction of meiotic maturation inXenopus oocytes by 12-O-tetradecanoylphorbol 13-acetate.Exp. Cell Res. 169:514–523Google Scholar
  39. Swanson, J.A., Yirinec, B.D., Silverstein, S.C. 1985. Phorbol esters and horseradish perioxidase stimulate pinocytosis and redirect the flow of pinocytosed fluid in macrophages.J. Cell Biol. 100:851–859Google Scholar
  40. Vasilets, L., Mädefessel, K., Schwarz, W., Schmalzing, G. 1989a. Mechanism of sodium pump inhibition by phorbol ester inXenopus laevis oocytes.Naunyn Schmiedeberg's Arch. Pharmacol. 340(Suppl. II):R91Google Scholar
  41. Vasilets, L., Schmalzing, G., Schwarz, W. 1989b. Inhibition of sodium pumps ofXenopus oocytes by stimulation of protein kinase C.Hoppe Seylers Biol. Chem. 370:967Google Scholar
  42. Wallace, R.A., Steinhardt, R.A. 1977. Maturation ofXenopus oocytes. II. Observations on membrane potential.Dev. Biol. 57:305–316Google Scholar
  43. Yingst, D.R. 1988. Modulation of the Na, K-ATPase by Ca and intracellular proteins.Annu. Rev. Physiol. 50:291–303Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1990

Authors and Affiliations

  • L. A. Vasilets
    • 1
  • G. Schmalzing
    • 1
  • K. Mädefessel
    • 1
  • W. Haase
    • 1
  • W. Schwarz
    • 1
  1. 1.Max-Planck-Institut für BiophysikFrankfurt/M.Federal Republic of Germany

Personalised recommendations