Skip to main content
Log in

Rabbit distal colon epithelium: III. Ca2+-activated K+ channels in basolateral plasma membrane vesicles of surface and crypt cells

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

In the mammalian distal colon, the surface epithelium is responsible for electrolyte absorption, while the crypts are the site of secretion. This study examines the properties of electrical potential-driven86Rb+ fluxes through K+ channels in basolateral membrane vesicles of surface and crypt cells of the rabbit distal colon epithelium. We show that Ba2+-sensitive, Ca2+-activated K+ channels are present in both surface and crypt cell derived vesicles with half-maximal activation at 5×10−7 m free Ca2+. This suggests an important role of cytoplasmic Ca2+ in the regulation of the bidirectional ion fluxes in the colon epithelium.

The properties of K+ channels in the surface cell membrane fraction differ from those of the channels in the crypt cell derived membranes. The peptide toxin apamin inhibits Ca2+-activated K+ channels exclusively in surface cell vesicles, while charybdotoxin inhibits predominantely in the crypt cell membrane fraction. Titrations with H+ and tetraethylammonium show that both high-and low-sensitive86Rb+ flux components are present in surface cell vesicles, while the high-sensitive component is absent in the crypt cell membrane fraction. The Ba2+-sensitive, Ca2+-activated K+ channels can be solubilized in CHAPS and reconstituted into phospholipid vesicles. This is an essential step for further characterization of channel properties and for identification of the channel proteins in purification procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asher, C., Cragoe, E.J., Jr., Garty, H. 1987. Effects of amiloride analogues on Na+ transport in toad bladder membrane vesicles.J. Biol. Chem. 262:8566–8573

    PubMed  Google Scholar 

  2. Bardsley, W.G., McGinlay, P.B. 1987. The use of non-linear regression analysis and the F test for model discrimination with dose-response curves and ligand binding data.J. Theor. Biol. 126:183–201

    PubMed  Google Scholar 

  3. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal. Biochem. 72:248–254

    PubMed  Google Scholar 

  4. Burgess, G.M., Claret, M., Jenkinson, D.H. 1981. Effects of quinine and apamin on the calcium-dependent potassium permeability of mammalian hepatocytes and red cells.J. Physiol. (London) 317:67–90

    Google Scholar 

  5. Burnham, C., Braw, R., Karlish, S.J.D. 1986. A Ca-dependent K channel in “luminal” membranes from the renal outer medulla.J. Membrane Biol. 93:177–186

    Google Scholar 

  6. Chang, W.W.L., Leblond, C.P. 1971. Renewal of the epithelium in the descending colon of the mouse.Am. J. Anat. 131:73–100

    PubMed  Google Scholar 

  7. Chase, H.S., Jr. 1984. Does calcium couple the apical and basolateral membrane permeabilities in epithelia?Am. J. Physiol. 247:F869-F876

    PubMed  Google Scholar 

  8. Christensen, O., Zeuthen, T. 1987. Maxi K+ channels in leaky epithelia are regulated by intracellular Ca2+, pH and membrane potential.Pfluegers Arch. 408:249–259

    Google Scholar 

  9. Cook, N.S., Haylett, D.G. 1985. Effects of apamin, quinine and neuromuscular blockers on calcium-activated potassium channels in guinea pig hepatocytes.J. Physiol. (London) 358:373–394

    Google Scholar 

  10. DeCoursey, T.E., Chandy, K.G., Gupta, S., Cahalan, M.D. 1985. Voltage-dependent ion channels in T-lymphocytes.J. Neuroimmunol. 10:71–95

    PubMed  Google Scholar 

  11. DeCoursey, T.E., Chandy, K.G., Gupta, S., Cahalan, M.D. 1987. Two types of potassium channels in murine T lymphocytes.J. Gen. Physiol. 89:379–404

    PubMed  Google Scholar 

  12. Frizzell, R.A., Schultz, S.G. 1978. Effect of aldosterone on ion transport by rabbit colon in vitro.J. Membrane Biol. 39:1–26

    Google Scholar 

  13. Fukushima, Y., Hagiwara, S. 1985. Currents carried by monovalent cations through calcium channels in mouse neoplastic B lymphocytes.J. Physiol. (London) 358:255–284

    Google Scholar 

  14. Garty, H., Asher, C., Yeger, O. 1987. Direct inhibition of epithelial Na+ channels by a pH-dependent interaction with calcium, and by other divalent ions.J. Membrane Biol. 95:151–162

    Google Scholar 

  15. Garty, H., Benos, D.J. 1988. Characteristics and regulatory mechanisms of the amiloride-blockable Na+ channel.Physiol. Rev. 68:309–373

    PubMed  Google Scholar 

  16. Gustin, M.C., Goodman, D.B.P. 1981. Isolation of brush-border membrane from the rabbit descending colon epithelium.J. Biol. Chem. 256:10651–10656

    PubMed  Google Scholar 

  17. Halm, D.R., Frizzell, R.A. 1986. Active K+ transport across rabbit distal colon: Relation to Na+ absorption and Cl secretion.Am. J. Physiol. 251:C252-C267

    PubMed  Google Scholar 

  18. Heintze, K., Stewart, C.P., Frizzell, R.A. 1983. Sodium-dependent chloride secretion across rabbit descending colon.Am. J. Physiol. 244:G357-G365

    PubMed  Google Scholar 

  19. Hermann, A., Gorman, A.L.F. 1981. Effects of 4-aminopyridine on potassium currents in a molluscan neuron.J. Gen. Physiol. 78:63–86

    PubMed  Google Scholar 

  20. Hugues, M., Duval, D., Schmid, H., Kitabgi, P., Lazdunski, M., Vincent, J.P. 1982. Specific binding and pharmacological interactions of apamin, the neurotoxin from bee venom, with guinea pig colon.Life Sci. 31:437–443

    PubMed  Google Scholar 

  21. Hugues, M., Romey, G., Duval, D., Vincent, J.P., Lazdunski, M. 1982. Apamin as a selective blocker of the calcium-dependent potassium channel in neuroblastoma cells: Volt-age-clamp and biochemical characterization of the toxin receptor.Proc. Natl. Acad. Sci. USA 79:1308–1312

    PubMed  Google Scholar 

  22. Jørgensen, P.L. 1986. Structure, function and regulation of Na,K-ATPase in the kidney.Kidney Int. 29:10–20

    PubMed  Google Scholar 

  23. Klaerke, D.A., Karlish, S.J.D., Jørgensen, P.L. 1987. Reconstitution in phospholipid vesicles of calcium-activated potassium channel from outer renal medulla.J. Membrane Biol. 95:105–112

    Google Scholar 

  24. Latorre, R., Miller, C. 1983. Conduction and selectivity in potassium channels.J. Membrane Biol. 71:11–30

    Google Scholar 

  25. Latorre, R., Oberhauser, A., Labarca, P., Alvarez, O. 1989. Varieties of calcium-activated potassium channels.Annu. Rev. Physiol. 51:385–399

    PubMed  Google Scholar 

  26. Loo, D.D.F., Kaunitz, J.D. 1989. Ca2+ and cAMP activate K+ channels in the basolateral membrane of crypt cells isolated from rabbit distal colon.J. Membrane Biol. 110:19–28

    Google Scholar 

  27. MacKinnon, R., Miller, C. 1988. Mechanism of charybdotoxin block of the high-conductance, Ca2+-activated K+ channel.J. Gen. Physiol. 91:335–349

    PubMed  Google Scholar 

  28. McCabe, R.D., Smith, P.L. 1985. Colonic potassium and chloride secretion: Role of cAMP and calcium.Am. J. Physiol. 248:G103-G109

    PubMed  Google Scholar 

  29. Moczydlowski, E., Alvarez, O., Vergara, C., Latorre, R. 1985. Effect of phospholipid surface charge on the conductance and gating of a Ca2+-activated K+ channel in planar lipid bilayers.J. Membrane Biol. 83:273–282

    Google Scholar 

  30. Moczydlowski, E., Lucchesi, K., Ravindran, A. 1988. An emerging pharmacology of peptide toxins targeted against potassium channels.J. Membrane Biol. 105:95–111

    Google Scholar 

  31. Petersen, O.H., Maruyama, Y. 1984. Calcium-activated potassium channels and their role in secretion.Nature (London) 307:693–696

    Google Scholar 

  32. Plass, H., Gridl, A., Turnheim, K. 1986. Absorption and secretion of potassium by rabbit descending colon.Pfluegers Arch. 406:509–519

    Google Scholar 

  33. Potter, G.D., Tran, T., Sellin, J.H. 1989. Colonic epithelial cell calcium response to bile acid in vitro.Gastroenterology 96:A398

    Google Scholar 

  34. Schmid-Antomarchi, H., De Weille, J., Fosset, M., Lazdunski, M. 1987. The receptor for antidiabetic sulfonylureas controls the activity of the ATP-modulated K+ channel in insulin-secreting cells.J. Biol. Chem. 262:15840–15844

    PubMed  Google Scholar 

  35. Schultz, S.G. 1984. A cellular model for active sodium absorption by mammalian colon.Annu. Rev. Physiol. 46:435–451

    PubMed  Google Scholar 

  36. Seagar, M.J., Marqueze, B., Couraud, F. 1987. Solubilization of the apamin receptor associated with a calcium-activated potassium channel from rat brain.J. Neurosci. 7:565–570

    PubMed  Google Scholar 

  37. Smith, P.L., McCabe, R.D. 1984. Mechanism and regulation of transcellular potassium transport by the colon.Am. J. Physiol. 247:G445-G456

    PubMed  Google Scholar 

  38. Turnheim, K., Costantin, J., Chan, S., Schultz, S.G. 1989. Reconstitution of a calcium-activated potassium channel in basolateral membranes of rabbit colonocytes into planar lipid bilayers.J. Membrane Biol. 112:247–254

    Google Scholar 

  39. Turnheim, K., Plass, H., Grasl, M., Krivanek, P., Wiener, H. 1986. Sodium absorption and potassium secretion in rabbit colon during sodium deficiency.Am. J. Physiol. 250:F235-F245

    PubMed  Google Scholar 

  40. Welsh, M.J., Smith, P.L., Fromm, M., Frizzell, R.A. 1982. Crypts are the site of intestinal fluid and electrolyte secretion.Science 218:1219–1221

    PubMed  Google Scholar 

  41. Wiener, H., Turnheim, K., van Os, C.H. 1989. Rabbit distal colon epithelium: I. Isolation and characterization of basolateral plasma membrane vesicles from surface and crypt cells.J. Membrane Biol. 110:147–162

    Google Scholar 

  42. Wiener, H., van Os, C.H. 1989. Rabbit distal colon epithelium: II. Characterization of (Na+,K+,Cl)-cotransport and [3H]bumetanide binding.J. Membrane Biol. 110:163–174

    Google Scholar 

  43. Wills, N.K. 1984. Mechanisms of ion transport by the mammalian colon revealed by frequency domain analysis techniques.Curr. Top. Membrane Transp. 20:61–85

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiener, H., Klaerke, D.A. & Jørgensen, P.L. Rabbit distal colon epithelium: III. Ca2+-activated K+ channels in basolateral plasma membrane vesicles of surface and crypt cells. J. Membrain Biol. 117, 275–283 (1990). https://doi.org/10.1007/BF01868457

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868457

Key Words

Navigation