Skip to main content
Log in

Transport of an anionic substrate by the H+/monosaccharide symport inRhodotorula gracilis: Only the protonated form of the carrier is catalytically active

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The yeastRhodotorula gracilis accumulated glucuronate by an H+/symport. The transport was electroneutral, driven by the chemical gradient of protons Δ pH. The observed stoichiometry amounted to 1 proton per molecule glucuronate. At pH 4, the half-saturation constantK T was at its lowest value (K T =8mm), whereas the maximal velocityV T reached a maximum (V T =15 nmol/min×mg dry wt). Monosaccharides competitively inhibited the uptake of glucuronate and vice versa. Hence, the two substrates share the same transport system. The steady-state accumulation of glucuronate reflected the course of the pH gradient. It is concluded that glucuronate is transported as an anionic substrate by the protonated carrier, the driving force being the chemical gradient of the H+ (ΔpH). The ternary carrier/H+/glc-COOO-complex is electroneutral and independent of the membrane potential. Simultaneous uptake of organic acids (acetic or propionic acid) which is also energized by the pH gradient led to a noncompetitive inhibition of glucuronate transport. Thus, manipulation of the driving force, ΔpH, reducedV T without affectingK T . Kinetic and energetic arguments are presented which stronly suggest that only the protonated carrier is catalytically active inR. gracilis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alcorn, M.E., Griffin, C.C. 1978. A kinetic analysis ofd-xylose transport inRhodotorula glutinis.Biochim. Biophys. Acta 510:361–371

    Google Scholar 

  • Brewer, J.M., Pesce, A.J., Ashworth, R.B. 1974. Experimental Techniques in Biochemistry, p. 299. Prentice Hall, Englewood Cliffs, N.J.

    Google Scholar 

  • Eddy, A.A. 1978. Proton-dependent solute transport in microorganisms.Curr. Top. Membr. Transp. 10:279–360

    Google Scholar 

  • Eddy, A.A. 1982. Mechanisms of solute transport in selected eukaryotic microorganisms.Adv. Microb. Physiol. 23:1–78

    Google Scholar 

  • Harold, F.M. 1977. Membranes and energy transduction in bacteria.Curr. Top. Bioenerg. 6:83–149

    Google Scholar 

  • Hauer, R., Höfer, M. 1978. Evidence for interactions between the energy-dependent transport of sugars and the membrane potential in the yeastRhodotorula gracilis (Rhodosporidium toruloides).J. Membrane Biol. 43:335–349

    Google Scholar 

  • Hauer, R., Höfer, M. 1982. Variable H+/substrate stoichiometries inRhodotorula gracilis are caused by a pH-dependent protonation of the carrierts).Biochem. J. 208:459–464

    Google Scholar 

  • Heinz, E., Geck, P. 1978. The electrical potential difference as a driving force in Na+-linked cotransport of organic solutes.In: Membrane Transport Processes. J.F. Hoffman, editor, Vol. 1, pp. 13–30. Raven, New York

    Google Scholar 

  • Heller, K.B., Höfer, M. 1975. Temperature dependence of the energy-linked monosaccharide transport across the cell membrane ofRhodotorula gracilis.J. Membrane Biol. 21:261–271

    Google Scholar 

  • Höfer, M., Becker, J.-U. 1972. Regulations möglichkeiten des Stoffwechsels von Monosacchariden und Carbonsäuren beiRhodotorula gracilis.Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. 1: Orig. Reihe A 220:374–379

    Google Scholar 

  • Höfer, M., Huh, H., Künemund, A. 1983. Membrane potential and cation permeability. A study with a nystatin-resistant mutant ofRhodotorula gracilis (Rhodosporidium toruloides).Biochim. Biophys. Acta 735:211–214

    Google Scholar 

  • Höfer, M., Kotyk, A. 1968. Tight coupling of monosaccharide transport and metabolism inRhodotorula gracilis.Folia Microbiol. (Prague) 13:197–204

    Google Scholar 

  • Höfer, M., Misra, P.C. 1978. Evidence for a H+-sugar symport in the yeastRhodotorula gracilis (glutinis).Biochem. J. 172:15–22

    Google Scholar 

  • Höfer, M., Thiele, O.W., Huh, H., Hunneman, D.H., Mracek, M. 1982. A nystatin-resistant mutant ofRhodotorula gracilis. Transport properties and sterol content.Arch. Microbiol. 132:313–316

    Google Scholar 

  • Kaczorowski, G.J., Kaback, H.R. 1979. Mechanism of lactose translocation in membrane vesicles fromEscherichia coli. 1. Effect of pH on efflux, exchange, and counterflow.Biochemistry 18:3691–3697

    Google Scholar 

  • Kaczorowski, G.J., Robertson, D.E., Kaback, R. 1979. Mechanism of lactose translocation in membrane vesicles fromEscherichia coli. 2. Effect of imposed Δψ, ΔpH, and ΔµH+.Biochemistry 18:3697–3704

    Google Scholar 

  • Komor, E., Schwab, W.G.M., Tanner, W. 1979. The effect of intracellular pH on the rate of hexose uptake inChlorella.Biochim. Biophys. Acta 555:524–530

    Google Scholar 

  • Komor, E., Tanner, W. 1974. The hexose-proton cotransport system ofChlorella. pH-dependent change inK m values and translocation constants of the uptake system.J. Gen. Physiol. 64:568–581

    Google Scholar 

  • Komor, E., Tanner, W. 1975. Simulation of a high- and low-affinity sugar-uptake system inChlorella by a pH-dependent change in theK m of the uptake system.Planta 123:195–198

    Google Scholar 

  • Lineweaver, H., Burk, D. 1934. The determination of enzyme dissociation constants.J. Am. Chem. Soc. 56:658–666

    Google Scholar 

  • Misra, P.C., Höfer, M. 1975. An energy-linked proton extrusion across the cell membrane ofRhodotorula gracilis.FEBS Lett. 52:95–99

    Google Scholar 

  • Niemietz, C. 1982. Aktiver Transport geladener Substrate über ein Protonen-Monosaccharid-Symport-System: Transport von Aminozuckern und Uronsäuren bei der HefeRhodotorula gracilis (Rhodosporidium toruloides). Ph.D. Thesis. University of Bonn, West Germany

    Google Scholar 

  • Niemietz, C., Hauer, R., Höfer, M. 1981. Active transport of charged substrates by a proton/sugar co-transport system. Amino-sugar uptake in the yeastRhodotorula gracilis.Biochem. J. 194:433–441

    Google Scholar 

  • Niven, D.F., Hamilton, W.A. 1974. Mechanism of energy coupling to the transport of amino acids byStaphylococcus aureus.Eur. J. Biochem. 44:517–522

    Google Scholar 

  • Page, M.G.P., West, I.C. 1981. The kinetics of the β-galactoside-proton symport ofEscherichia coli.Biochem. J. 196:721–731

    Google Scholar 

  • Schwab, W.G.M., Komor, E. 1978. A possible mechanistic role of the membrane potential in proton-sugar cotransport ofChlorella.FEBS Lett. 87:157–160

    Google Scholar 

  • Thomas, E.L., Christensen, H.N. 1971. Nature of the cosubstrate action of Na+ and neutral amino acids in a transport system.J. Biol. Chem. 246:1682–1688

    Google Scholar 

  • West, I.C. 1980. Energy coupling in secondary active transport.Biochim. Biophys. Acta 604:91–126

    Google Scholar 

  • Wright, J.K., Overath, P. 1980. Lactose transport inEscherichia coli: Effects of transmembrane potential difference on apparent substrate affinity.Biochem. Soc. Trans. 8:279–281

    Google Scholar 

  • Wright, J.K., Teather, R.M., Overath, P. 1979. Lactose carrier proteins of the two binding sites.In: Function and Molecular Aspects of Biomembrane Transport. E. Quagliariello, F. Palmieri, S. Papa and M. Klingenberg, editors. pp. 239–248. Elsevier/North Holland, Amsterdam

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niemietz, C., Höfer, M. Transport of an anionic substrate by the H+/monosaccharide symport inRhodotorula gracilis: Only the protonated form of the carrier is catalytically active. J. Membrain Biol. 80, 235–242 (1984). https://doi.org/10.1007/BF01868441

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868441

Key Words

Navigation