Skip to main content
Log in

Molecular motion underlying activation and inactivation of sodium channels in squid giant axons

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Measurements of the changes in birefringence associated with changes in membrane potential were made with internally perfused squid giant axons in low sodium solutions at 0–8°C. The time course of the birefringence changes share many properties of the ‘gating’ (polarization) currents previously studied in this nerve. Both can be demonstrated as an asymmetry in the response to voltage pulses symmetrical about the resting potential which is not present about a hyperpolarized holding potential. Both have a rapid relaxation, which precedes the sodium permeability change. Both exhibit an initial delay or rising phase. Both are reversibly blocked by perfusion with 30mm colchicine; neither are altered by changes on sodium concentrations or 300nm tetrodotoxin. The birefringence response has a decrease in the amplitude of the rapid relaxation associated with the appearance of a slow relaxation. This is similar to the immobilization of fast gating charges which parallels sodium current inactivation.

The amplitude of the birefringence and the gating current responses is consistent with a change in the alignment of several hundred peptide bonds per sodium channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aldrich, R.W., Corey, D.P., Stevens, C.F. 1983. A reinterpretation of mammalian sodium channel gating based on single channel recording.Nature (London) 306:436–441

    Google Scholar 

  • Almers, W. 1978. Gating currents and charge movements in excitable membranes.Rev. Physiol. Biochem. Pharmacol. 82:96–190

    PubMed  Google Scholar 

  • Armstrong, C.M., Bezanilla, F. 1973. Currents related to the movement of gating particles of the sodium channels.Nature (London) 242:459–461

    Google Scholar 

  • Armstrong, C.M., Bezanilla, F. 1974. Charge movement associated with the opening and closing of the activation gates of the Na channels.J. Gen. Physiol. 63:533–552

    PubMed  Google Scholar 

  • Armstrong, C.M., Bezanilla, F. 1977. Inactivation of the sodium channel: II. Gating current experiments.J. Gen. Physiol. 70:567–590

    PubMed  Google Scholar 

  • Armstrong, C.M., Gilly, W.F. 1979. Fast and slow steps in the activation of sodium channels.J. Gen. Physiol. 74:691–711

    PubMed  Google Scholar 

  • Cantor, C.R., Schimmel, P.R. 1980. Biophysical Chemistry II: Techniques for the Study of Biological Structure and Function. W. H. Freeman, San Francisco

    Google Scholar 

  • Cohen, L.B., Hille, B., Keynes, R.D. 1970. Changes in axon birefringence during the action potential.J. Physiol. (London) 211:495–515

    Google Scholar 

  • Cohen, L.B., Hille, B., Keynes, R.D., Landowne, D., Rojas, E. 1971. Analysis of the potential-dependent changes in optical retardation in the squid giant axon.J. Physiol. (London) 218:205–237

    Google Scholar 

  • Cohen, L.B., Keynes, R.D., Hille, B. 1968. Light scattering and birefringence changes during nerve activity.Nature (London) 218:438–441

    Google Scholar 

  • Haydon, D.A., Elliott, J.R., Hendry, B.M. 1984. Effects of anesthetics on the squid giant axon.Curr. Topics Membr. Transp. 22:445–482

    Google Scholar 

  • Hodgkin, A.L., Huxley, A.F. 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve.J. Physiol. (London) 117:500–544

    Google Scholar 

  • Horn, R., Vandenberg, C.A., Lange, K. 1984. Statistical analysis of single sodium channels. Effects of N-bromoacetamide.Biophys. J. 45:323–335

    PubMed  Google Scholar 

  • Keynes, R.D., Greeff, N.G., Helden, D.F. van 1982. The relationship between the inactivating fraction of the asymmetry current and gating of the sodium channel in the squid giant axon.Proc. R. Soc. London B 215:391–404

    Google Scholar 

  • Kurland, R.J., Wilson, E.B. 1957. Microwave spectrum, structure, dipole moment and quadrapole coupling constants of formamide.J. Chem. Phys. 27:585–590

    Google Scholar 

  • Landowne, D. 1984a. Optical studies of sodium channels.Biophys. J. 45:57–59

    Google Scholar 

  • Landowne, D. 1984b. Optical measurements of activation and inactivation of sodium channels.Biol. Bull. Mar. Biol. Lab. Woods Hole 167:528

    Google Scholar 

  • Landowne, D., Larsen, J.B., Taylor, K.T. 1982. Colchicine alters the nerve birefringence response.Science 220:953–954

    Google Scholar 

  • Levinson, S.R., Meves, H. 1975. The binding of tritiated tetrodotoxin to squid giant axons.Phil. Trans. R. Soc. London B 270:349–352

    Google Scholar 

  • Matsumoto, G., Ichikawa, M., Tasaki, A. 1984. Axonal microtubules necessary for generation of sodium current in squid giant axons: II. Effect of colchicine upon asymmetrical displacement current.J. Membrane Biol. 77:93–99

    Google Scholar 

  • Meves, H. 1974. The effect of holding potential on the asymmetry currents in squid giant axons.J. Physiol. (London) 243:847–867

    Google Scholar 

  • Mitchison, J.M. 1953. A polarized light analysis of the human red cell ghost.J. Exp. Biol. 30:397–432

    Google Scholar 

  • Noda, M., Shimizu, S., Tanabe, T., Takai, T., Kayano, T., Ikeda, T., Takahashi, H., Nakayama, H., Kanaoka, Y., Minamino, N., Kangawa, K., Matsuo, H., Raftery, M.A., Hirose, T., Inayama, H., Hayashida, H., Miyata, T., Numa, S. 1984. Primary structure ofElectrophorus electricus sodium channel deduced fromcDNA sequence.Nature (London) 312:121–127

    Google Scholar 

  • Rosenberg, R.L., Tomika, S.A., Agnew, W.S. 1984. Single channel properties of the reconstituted voltage-regulated Na channel isolated from electroplax ofElectrophorus electricus.Proc. Natl. Acad. Sci. USA 81:5594–5598

    PubMed  Google Scholar 

  • Schauf, C.L., Bullock, J.O. 1979. Modifications of sodium channel gating inMyxicola giant axons by deuterium oxide, temperature and internal cations.Biophys. J. 27:193–208

    PubMed  Google Scholar 

  • Scruggs, V., Landowne, D. 1980. The birefringence response of voltage-clamped internally perfused axons.Biol. Bull. Mar. Biol. Lab. Woods Hole 159:491

    Google Scholar 

  • Stimers, J.R., Bezanilla, F., Taylor, R.E. 1984. Squid axon sodium channel: Gating current without rising phase.Biophys. J. 45:12a

    Google Scholar 

  • Stimers, J.R., Bezanilla, F., Taylor, R.E. 1985. Sodium channel activation in the squid giant axon.J. Gen. Physiol. 85:65–82

    PubMed  Google Scholar 

  • Strichartz, G.R., Rogart, R.B., Ritchie, J.M. 1979. Binding of radioactively labelled saxitoxin to the squid giant axon.J. Membrane Biol. 48:357–364

    Google Scholar 

  • Unwin, P.N.T., Zampighi, G. 1980. Structure of the junction between communicating cells.Nature (London) 283:545–549

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Landowne, D. Molecular motion underlying activation and inactivation of sodium channels in squid giant axons. J. Membrain Biol. 88, 173–185 (1985). https://doi.org/10.1007/BF01868431

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868431

Key Words

Navigation