The Journal of Membrane Biology

, Volume 13, Issue 1, pp 199–216 | Cite as

Ion and water balance in isolated epithelial cells of the abdominal skin of the frogLeptodactylus ocellatus

  • Edit A. Zylber
  • Catalina A. Rotunno
  • Marcelino Cereijido
Article

Summary

Isolated epithelial cells were obtained from abdominal skin of the frogLeptodactylus ocellatus by a trypsination-dissection method. As estimated by nigrosin staining, the amount of damaged cells is only 6.6±0.7 per cent. When washed briefly after incubation the ionic concentrations in these cells were (mm): K+ 14.20±4.0; Na+ 15.8±1.8; and Cl 57.2±5.3. If they are not washed, the concentration of K+ remains essentially the same (131.2±1.4mm) but the Na+ concentration is much higher (38.5±0.9mm). It is shown that a large fraction of Na+ is contained in a compartment that is freely connected with the bathing solution. Ouabain (10−4m) elicits a marked decrease of K+, a slight decrease of Cl, and an increase of Na+ content. In an equal period, low temperature (3°C) produces a similar effect, although less marked than ouabain.

Keywords

Epithelial Cell Human Physiology Ionic Concentration Water Balance Large Fraction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Aceves, J., Erlij, D. 1971. Sodium transport across the isolated epithelium of frog skin.J. Physiol. 212:195PubMedGoogle Scholar
  2. Bray, G. A. 1960. Liquid scintillation for aqueous solutions.Analyt. Biochem. 1:279Google Scholar
  3. Burg, H. B., Orloff, J. 1962. Oxygen consumption and active transport in separated renal tubules.Amer. J. Physiol. 203:327PubMedGoogle Scholar
  4. Cereijido, M., Curran, P. F. 1965. Intracellular electrical potentials in frog skin.J. Gen. Physiol. 48:543PubMedGoogle Scholar
  5. Curran, P. F., Cereijido, M. 1965. K fluxes in frog skin.J. Gen. Physiol. 48:1011PubMedGoogle Scholar
  6. De Luca, C. 1965. The use of trypsin for the determination of cellular viability.Exp. Cell. Res. 40:186PubMedGoogle Scholar
  7. Farquhar, M. G., Palade, G. E. 1965. Cell functions in amphibian skin.J. Cell. Biol. 26:263PubMedGoogle Scholar
  8. Gatzy, J. T., Berndt, W. O. 1968. Isolated epithelial cells of the toad bladder: Their preparation, oxygen consumption and electrolyte content.J. Gen. Physiol. 51:770PubMedGoogle Scholar
  9. Giuditta, A., D'Udine, B., Pepe, M., 1971. Uptake of protein by the giant axon of the squid.Nature, New Biol. 229:29Google Scholar
  10. Herrera, F. C. 1968. Action of ouabain on bioelectric properties and ion content in toad urinary bladder.Amer. J. Physiol. 215:183PubMedGoogle Scholar
  11. Kaltenbach, J. P., Kaltenbach, M. H., Lyous, W. B. 1958. Nigrosin as a dye for differentiating live and dead ascites cells.Exp. Cell. Res. 15:112PubMedGoogle Scholar
  12. Koefoed-Johnsen, V. 1957. The effect ofg-strophanthin (ouabain) on the active transport of sodium through the isolated frog skin.Acta Physiol. Scand. 42 (suppl. 145):87Google Scholar
  13. Macknight, A. D. C., Di Bona, D. R., Leaf, A., Civan, M. M. 1971. Measurement of the composition of epithelial cells from the toad urinary bladder.J. Membrane Biol. 6:108Google Scholar
  14. Maizels, M., Remington, M. 1959. Percentage of intercellular medium in human erythrocytes centrifuged from albumin and other media.J. Physiol. 145:658PubMedGoogle Scholar
  15. Reiser, S., Christiansen, P. A. 1971. The properties of the preferential uptake ofl-Leucine by isolated intestinal epithelial cells.Biochim. Biophys. Acta 225:123PubMedGoogle Scholar
  16. Rotunno, C. A., Zylber, E. A., Cereijido, M. 1973. Ion and water balance in the epithelium of the abdominal skin of the frogLeptodactylus ocellatus.J. Membrane Biol. 13:217Google Scholar
  17. Schales, O., Schales, S. S. 1941. A simple and accurate method for the determination of chloride in biological fluids.J. Biol. Chem. 140:879Google Scholar
  18. Snow, C., Allen, A. 1970. The release of radioactive nucleic acids and mucoproteins by tripsin and EDTA-acetate treatment of baby-hamster cells in tissue culture.Biochem. J. 119:707PubMedGoogle Scholar
  19. Weiss, L. 1958. The effects of trypsin on the size, viability and dry mass of sarcoma 37 cells.Exp. Cell. Res. 14:80PubMedGoogle Scholar
  20. White, H. L., Rolf, D. 1957. Whole body and tissue inulin and sucrose spaces in the rat.Amer. J. Physiol. 188:151PubMedGoogle Scholar
  21. Zadunaisky, J. A., Candia, O. A. 1962. Active transport of sodium and chloride by the isolated skin of the South American frogLeptodactylus ocellatus.Nature 195:1004Google Scholar
  22. Zadunaisky, J. A., Candia, O. A., Chiarandini, D. J. 1963. The origin of the shortcircuit current in the isolated skin of the South American frogLeptodactylus ocellatus.J. Gen. Physiol. 47:393PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc 1973

Authors and Affiliations

  • Edit A. Zylber
    • 1
  • Catalina A. Rotunno
    • 1
  • Marcelino Cereijido
    • 1
  1. 1.Department of Biophysics, CIMAE and Department of Physical Chemistry, Faculty of Pharmacy and BiochemistryUniversity of Buenos AiresArgentina

Personalised recommendations