Skip to main content
Log in

Sodium fluxes in rat red blood cells in potassium-free solutions

Evidences for facilitated diffusion

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Unidirectional as well as net sodium fluxes were studied in rat red blood cells incubated in potassium-free sodium and sodium-substituted solutions. In the absence of ouabain the magnitude of sodium efflux in different solutions followed the sequence Na>choline>tris>Mg; in the presence of 10−4 M ouabain the sequence was choline>tris>Na>Mg. In a sodium-magnesium mixture the ouabain-sensitive sodium influx as a function of the external sodium concentration followed more or less an S-shaped curve; at high external sodium there was good agreement with the efflux values, but below 90mM-Na all efflux points were above the influx ones. Both ouabain-insensitive Na influx and efflux were stimulated by external Na following a linear relationship though with different slopes. In net flux experiments these cells were able to extrude sodium against an electrochemical gradient in K-free ouabain Na−Mg and Na-choline mixture solutions. In K-free-Na-free magnesium media the ouabain-sensitive sodium loss increased proportionally to the square of the internal sodium, whereas the ouabaininsensitive loss went to saturation. In K-free sodium solutions the net Na gain was reduced as internal Na increased and was unaffected by ouabain. These results, plus the changes in the sodium influx/net Na gain ratio and in the rate constant for Na efflux when internal Na was modified, are consistent with the existence of a facilitated diffusion system for sodium movements which contributes, together with leakage, to the net Na gain in K-free sodium solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albers, R. W., Koval, G. J., Siegel, S. 1968. Studies on the interaction of ouabain and other cardioactive steroids with sodium-potassium-activated adenosine triphosphatase.Mol. Pharmacol. 4:324

    PubMed  Google Scholar 

  • Baker, P. F., Blaustein, M. P., Keynes, R. D., Manil, J., Shaw, T. I., Steinhardt, R. 1969. The ouabain-sensitive fluxes of sodium and potassium in squid giant axons.J. Physiol. 200:459

    PubMed  Google Scholar 

  • Baker, P. F., Connelly, C. M. 1966. Some properties of the external activation site of the sodium pump in crab nerve.J. Physiol. 185:270

    Google Scholar 

  • Beaugé, L. A., Ortiz, O. 1970. Rubidium, sodium and ouabain interactions on the influx of rubidium in rat red blood cells.J. Physiol. 210:519

    PubMed  Google Scholar 

  • Beaugé, L. A., Ortiz, O. 1971a. Sodium and rubidium fluxes in rat red blood cells.J. Physiol. 218:533

    PubMed  Google Scholar 

  • Beaugé, L. a., Ortiz, O. 1971b. Sodium fluxes in rat red blood cells.Proc. XXV Int. Congr. Physiol. Sci., p. 126

  • Beaugé, L. A., Ortiz, O. 1973. Net sodium fluxes in rat red cells by a facilitated diffusion system. Biophysical Society Meeting

  • Beaugé, L. A., Sjodin, R. A. 1968. The dual effect of lithium ions on sodium efflux in skeletal muscle.J. Gen. Physiol. 52:408

    PubMed  Google Scholar 

  • Brinley, F. J., Mullins, L. J. 1968. Sodium fluxes in internally dyalized squid axons.J. Gen. Physiol. 52:181

    PubMed  Google Scholar 

  • Cotterell, D., Whittam, R. 1971. The influence of the chloride gradient across red cell membranes on sodium and potassium movements.J. Physiol. 214:509

    PubMed  Google Scholar 

  • Garrahan, P. J., Glynn, I. M. 1967. The behaviour of the sodium pump in red cell in the absence of external potassium.J. Physiol. 192:159

    PubMed  Google Scholar 

  • Hoffman, J. F., Kregenow, F. M. 1966. The characterization of new energy dependent cation transport processes in red blood cells.Ann. N. Y. Acad. Sci. 137:566

    PubMed  Google Scholar 

  • Keynes, R. D., Steinhardt, R. A. 1968. The components of the sodium efflux in frog muscle.J. Physiol. 198:581

    PubMed  Google Scholar 

  • Levi, H., Ussing, H. H. 1948. The exchange of sodium and chloride ions across the fiber membrane of the isolated frog sartorius.Acta Physiol. Scand. 16:232

    Google Scholar 

  • Lubowitz, H., Whittam, R. 1969. Ion movements in human red cells independent of the sodium pump.J. Physiol. 202:111

    PubMed  Google Scholar 

  • Maizels, M. 1968. Effect of sodium content on sodium efflux from human red cells suspended in sodium-free media containing potassium, rubidium, caesium or lithium chloride.J. Physiol. 195:657

    PubMed  Google Scholar 

  • Sachs, J. R. 1970. Sodium movements in the human red blood cell.J. Gen. Physiol. 56:322

    PubMed  Google Scholar 

  • Sachs, J. R. 1971. Ouabain-insensitive sodium movements in the human red blood cell.J. Gen. Physiol. 57:259

    PubMed  Google Scholar 

  • Sachs, J. R., Conrad, M. 1968. Effect of tetraethylammonium on the active cation transport system of the red blood cell.Amer. J. Physiol. 215:795

    PubMed  Google Scholar 

  • Schales, O., Schales, S. 1941. A simple and accurate method for the determination of chloride in biological fluids.J. Biol. Chem. 140:879

    Google Scholar 

  • Sen, A. K., Tobin, T., Post, R. L. 1969. A cycle for ouabain inhibition of sodium- and potassium-dependent adenosine triphosphatase.J. Biol. Chem. 244:6596

    PubMed  Google Scholar 

  • Sjodin, R. A., Beaugé, L. A. 1973. An analysis of the leakages of sodium ions into and potassium ions out of striated muscle cells.J. Gen. Physiol. 61:222

    PubMed  Google Scholar 

  • Stein, W. D. 1967. The Movement of Molecules Across Cell Membranes. Academic Press Inc., New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beaugé, L.A., Ortiz, O. Sodium fluxes in rat red blood cells in potassium-free solutions. J. Membrain Biol. 13, 165–184 (1973). https://doi.org/10.1007/BF01868226

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868226

Keywords

Navigation