The Journal of Membrane Biology

, Volume 22, Issue 1, pp 53–72 | Cite as

A comparison of the rate equations, kinetic parameters, and activation energies for the initial uptake ofl-lysine,l-valine, γ-aminobutyric acid, and α-aminoisobutyric acid by mouse brain slices

  • Stephen R. Cohen


At substrate concentrations, in medium, of 0.2 to 20mm and at temperatures of 25 and 37°C, the initial concentrative influx of the amino acidsl-lysine (30 and 37°C),l-valine, and γ-aminobutyric acid into incubated mouse-cerebrum slices follows the rate equation for the initial influx of α-aminoisobutyric acid (Cohen,J. Physiol.228:105, 1973),v=Vmax/(1+Kt/S)+kuS. Kinetic constants at 37°C are:Vmax=0.089 μmoles/g final wet wt of slices, min,Kt=0.69mm,ku=0.037 μmoles/g final wet wt,mm-substrate, min forl-lysine;Vmax=0.60,Kt=1.30,ku=0.067 forl-valine; andVmax=1.71,Kt=1.58,ku=0.094 for γ-aminobutyric acid. The linear term,kuS, is due to an unsaturable process of concentrative uptake, not diffusion. Comparison of temperature coefficients reveals a “reference” pattern for typical low affinity transport of amino acids into brain slices. Its characteristics are: Activation energies associated withVmax andku are in range 14 to 20 kcal/mole;Kt varies only slightly with temperature.l-Lysine and α-aminoisobutyric acid fit this pattern;l-valine and γ-aminobutyric acid deviate in part. The Akedo-Christensen plot (J. Biol. Chem.237:118, 1962) does not distinguish between the rate equationv=Vmax/(1+Kt/S)+kuS for saturable uptake plus first-order unsaturable concentrative uptake, and the rate equationv=Vmax/(1+Kt/S)+kD(S−Si) for saturable uptake plus first-order nonconcentrative “passive diffusion”.


Activation Energy Kinetic Constant Brain Slice Rate Equation Passive Diffusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akedo, H., Christensen, H. N. 1962. Nature of insulin action on amino acid uptake by the isolated diaphragm.J. Biol. Chem. 237:118PubMedGoogle Scholar
  2. Barber, H. E., Welch, B. L., Mackay, D. 1967. The use of the logarithmic transformation in the calculation of the transport parameters of a system that obeys Michaelis-Menten kinetics.Biochem. J. 103:251PubMedGoogle Scholar
  3. Blasberg, R., Lajtha, A. 1965. Substrate specificity of steady-state amino acid transport in mouse brain slices.Arch. Biochem. Biophys. 112:361Google Scholar
  4. Christensen, H. N., Liang, M. 1966. On the nature of the “non-saturable” migration of amino acids into Ehrlich cells and into rat jejunum.Biochim. Biophys. Acta 112:524Google Scholar
  5. Coben, L. A., Cotlier, E., Beaty, C., Becker, B. 1970. Proline transport by rabbit ciliary body-irisin vitro.Invest. Ophthalmol. 9:949PubMedGoogle Scholar
  6. Coben, L. A., Cotlier, E., Beaty, C., Becker, B. 1971. Transport of amino acids by rabbit choroid plexusin vitro.Brain Res. 30:67PubMedGoogle Scholar
  7. Cohen, S. R. 1972. The estimation of extracellular space of brain tissuein vitro.In: Research Methods in Neurochemistry. N. Marks and R. Rodnight, editors. Vol. 1, Chap. 8, pp. 179–219. Plenum Press, New YorkGoogle Scholar
  8. Cohen, S. R. 1973a. The rate equation and activation energies for the uptake of α-aminoisobutyric acid by mouse brain slices.J. Physiol. 228:105PubMedGoogle Scholar
  9. Cohen, S. R. 1973b. Efflux of exogenous amino acids from brain slices. Evidence of compartmentation from the rate equation.Brain Res. 52:309PubMedGoogle Scholar
  10. Cohen, S. R. 1974. The contribution of adherent films of liquid on the cut surfaces of mouse brain slices to tissue water and “extracellular” marker spaces.Exp. Brain Res. 20:421PubMedGoogle Scholar
  11. Cohen, S. R., Blasberg, R., Levi, G., Lajtha, A. 1968. Compartmentation of the inulin space in mouse brain slices.J. Neurochem. 15:707Google Scholar
  12. Cohen, S. R., Lajtha, A. 1972. Amino acid transport.In: Handbook of Neurochemistry. A. Lajtha, editor. Vol. 7, Chap. 21, pp. 543–572. Plenum Press, New YorkGoogle Scholar
  13. Cohen, S. R., Stampleman, P. F., Lajtha, A. 1970. The temperature-dependent compartmentation of the “extracellular space” in mouse brain slices as revealed by the markers: inulin, sucrose,d-mannitol,d-sorbitol and sulfate.Brain Res. 21:419PubMedGoogle Scholar
  14. Dixon, M., Webb, E. C. 1964. Enzymes, 2nd Edition. pp. 158–165. Academic Press, New YorkGoogle Scholar
  15. Eagon, R. G., Phibbs, P. V., Jr. 1971. Kinetics of transport of glucose, fructose, and mannitol byPseudomonas aeruginosa.Canad. J. Biochem. 49:1031Google Scholar
  16. Eavenson, E., Christensen, H. N. 1967. Transport systems for neutral amino acids in the pigeon erythrocyte.J. Biol. Chem. 242:5386PubMedGoogle Scholar
  17. Gardner, J. D., Levy, A. G. 1972. Transport of dibasic amino acids by human erythrocytes.Metabolism 21:413PubMedGoogle Scholar
  18. Guidotti, G. G., Borghetti, A. F., Gaja, G., Lo Reti, L., Ragnetti, G., Foà, P. P. 1968. Amino acid uptake in the developing chick embryo heart.Biochem. J. 107:565PubMedGoogle Scholar
  19. Guidotti, G. G., Borghetti, A. F., Lüneburg, B., Gazzola, G. C. 1971. Kinetic analysis of insulin action on amino acid uptake by isolated chick embryo heart cells.Biochem. J. 122:409PubMedGoogle Scholar
  20. Jacquez, J. A., Sherman, J. H., Terris, J. 1970. Temperature dependence of amino acid transport in Ehrlich ascites cells: With results which bear on the A-L distribution.Biochim. Biophys. Acta 203:150PubMedGoogle Scholar
  21. Laššánová, M., Brechtlová, M. 1971. Transport ofl-glutamate and glycine in cells of rat cerebral cortex slices. Kinetics of transport.Physiol. Bohem. 20:235Google Scholar
  22. Lorenzo, A. V., Cutler, R. W. P. 1969. Amino acid transport by choroid plexusin vitro.J. Neurochem. 16:577PubMedGoogle Scholar
  23. Matthews, R. M. 1972. Characteristics of a transport system serving for the transfer of histidine into S37 ascites tumor cells.Biochim. Biophys. Acta 282:374PubMedGoogle Scholar
  24. McIlwain, H., Buddle, H. L. 1953. Techniques in tissue metabolism. 1. A mechanical chopper.Biochem. J. 53:412PubMedGoogle Scholar
  25. Neame, K. D. 1961. Transport, metabolism and pharmacology of amino acids in brain.In: Applied Neurochemistry. A. N. Davison and J. Dobbing, editors. Chap. 8, pp. 119–177. Blackwells Scientific Publications, OxfordGoogle Scholar
  26. Perry, T. L., Stedman, D., Hansen, S. 1968. A versatile lithium buffer elution system for single column automatic amino acid chromatography.J. Chromatog. 38:460Google Scholar
  27. Plagemann, P. G. W. 1970. Effect of temperature on the transport of nucleosides into Novikoff rat hepatoma cells growing in suspension culture.Arch. Biochem. Biophys. 140:223PubMedGoogle Scholar
  28. Reid, K. G., Utech, N. M., Holden, J. T. 1970. Multiple transport components for dicarboxylic amino acids inStreptococcus faecalis.J. Biol. Chem. 245:5261PubMedGoogle Scholar
  29. Segal, S., Crawhall, J. C. 1968. Characteristics of cystine and cysteine transport in rat kidney cortex slices.Proc. Nat. Acad. Sci. 59:231PubMedGoogle Scholar
  30. Silverman, A.-J., Knigge, K. M., Peck, W. A. 1972. Transport capacity of median eminence. I. Amino acid transport.Neuroendocrinology 9:123PubMedGoogle Scholar
  31. Smith, S. E. 1967. Kinetics of neutral amino acid transport in rat brainin vitro.J. Neurochem. 14:291PubMedGoogle Scholar
  32. Utech, N. M., Reid, K. G., Holden, J. T. 1970. Properties of a dicarboxylic amino acid transport-deficient mutant ofStreptococcus faecalis.J. Biol. Chem. 245:5273PubMedGoogle Scholar
  33. Vahvelainen, M.-L., Oja, S. S. 1972. Kinetics of influx of phenylalanine, tyrosine, tryptophan, histidine and leucine into slices of brain cortex from adult and 7-day-old rats.Brain Res. 40:477PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1975

Authors and Affiliations

  • Stephen R. Cohen
    • 1
  1. 1.New York State Research Institute for Neurochemistry and Drug AddictionNew York

Personalised recommendations