Skip to main content
Log in

Mechanism of activation of adenylate cyclase byVibrio cholerae enterotoxin

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The kinetics and properties of the activation of adenylate cyclase by cholera enterotoxin have been examined primarily in toad erythrocytes, but also in avian erythrocytes, rat fat cells and cultured melanoma cells. When cholera toxin is incubated with intact cells it stimulates adenylate cyclase activity, as measured in the subsequently isolated plasma membranes, according to a triphasic time course. This consists of a true lag period of about 30 min, followed by a stage of exponentially increasing adenylate cyclase activity which continues for 110 to 130 min, and finally a period of slow activation which may extend as long as 30 hr in cultured melanoma cells. The progressive activation of adenylate cyclase activity by cholera toxin is interrupted by cell lysis; continued incubation of the isolated membranes under nearly identical conditions does not lead to further activation of the enzyme. The delay in the action of the toxin is not grossly dependent of the number of toxin-receptor (GM1 ganglioside) complexes, and is still seen upon adding a second dose of toxin to partially stimulated cells. Direct measurements indicate negligible intracellular levels of biologically active radioiodinated toxin in either a soluble or a nuclear-bound form. The effects are not prevented by Actinomycin D (20μg/ml), puromycin (30 μ/ml), cycloheximide (30 μg/ml), sodium fluoride (10mM) or sodium azide (1mM); KCN, however, almost completely prevents the action of cholera toxin. The action of the toxin is temperature dependent, occurring at very slow or negligible rates below certain critical temperatures, the values of which depend on the specific animal species. The transition for toad erythrocytes occurs at 15 to 17°C, while rat adipocytes and turkey erythrocytes demonstrate a discontinuity at 26 to 30°C. The temperature effects are evident during the lag period as well as during the exponential phase of activation. The rate of decay of the stimulated adenylate cyclase activity of cultured melanoma cells indicates a half-time of about 36hr. The rate of exponentially increasing activity and extent of enzyme activation are related to the number of bound toxin molecules according to a Langmuir adsorption isotherm and are half-maximal when about 2000 molecules of toxin are bound per cell. It is proposed that initially cholera toxin binds ineffectively, but that it is converted to an active form during the lag phase. This process may involve lateral motion of a toxin-GM1 ganglioside complex within the plane of the membrane. The kinetics of adenylate cyclase activation are consistent with the possibility that during the exponential phase a bimolecular association is proceeding between the active form of the cholera toxin and some other membrane component. The possibility is considered that the cholera toxin molecule may bind directly to adenylate cyclase. These considerations may prove useful in understanding the possible interactions of active hormone-receptor complexes with adenylate cyclase in cell membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bennett, V., Cuatrecasas, P. 1974. Properties of the cholera toxin-stimulated adenylate cyclase of toad and rat erythrocyte plasma membranes and the mechanism of action of cholera toxin.Fed. Proc. 33:1357 (Abstr.)

    Google Scholar 

  • Bennett, V., Cuatrecasas, P. 1975. Mechanism of action ofVibrio cholerae enterotoxin. Effects on adenylate cyclase of toad and rat erythrocyte plasma membranes.J. Membrane Biol. 22:1

    Google Scholar 

  • Bennett, V., O'Keefe, E., Cuatrecasas, P. 1975. The mechanism of action of cholera toxin and the mobile receptor theory of hormone-receptor-adenylate cyclase interactions.Proc. Nat. Acad. Sci. 72:33

    PubMed  Google Scholar 

  • Birnbaumer, L. 1973. Hormone-sensitive adenylyl cyclases. Useful models for studying hormone receptor function in cell-free systems.Biochim. Biophys. Acta 300:129

    PubMed  Google Scholar 

  • Boon, T. 1971. Inactivation of ribosomes in vitro by colicin E3.Proc. Nat. Acad. Sci. 68:2421

    PubMed  Google Scholar 

  • Carpenter, C. C. J., Greenough, W. B. III. 1968. Response of the canine duodenum to intraluminal challenge with cholera extoxin.J. Clin. Invest. 47:2600

    PubMed  Google Scholar 

  • Carpenter, C. C. J., Sack, R. B., Feeley, J. C., Steenberg, R. W. 1968. Site and characteristics of electrolyte loss and effect of intraluminal glucose in experimental canine cholera.J. Clin. Invest. 47:1210

    PubMed  Google Scholar 

  • Chang, K.-J., Bennett, V., Cuatrecasas, P. 1974. Membrane receptors as general markers for plasma membrane isolation procedures—The use of125I-labelled wheat germ agglutinin, insulin and cholera toxin.J. Biol. Chem. (In press)

  • Chang, K.-J., Cuatrecasas, P. 1974. Adenosine triphosphate-dependent inhibition of insulin-stimulated glucose transport in fat cells. Possible role of membrane phosphorylation.J. Biol. Chem. 249:3170

    PubMed  Google Scholar 

  • Cuatrecasas, P. 1971. Insulin-receptor interactions in adipose tissue cells: Direct measurement and properties.Proc. Nat. Acad. Sci. 68:1264

    PubMed  Google Scholar 

  • Cuatrecasas, P. 1973a. The interaction ofVibrio cholerae enterotoxin with cell membranes.Biochemistry 12:3547

    PubMed  Google Scholar 

  • Cuatrecasas, P. 1973b. Gangliosides and membrane receptors for cholera toxin.Biochemistry 12:3558

    PubMed  Google Scholar 

  • Cuatrecasas, P. 1973c. Cholera toxin-fat cell interaction and the mechanism of activation of the lipolytic response.Biochemistry 12:3567

    PubMed  Google Scholar 

  • Cuatrecasas, P. 1973d.Vibrio cholerae choleragenoid — Mechanism of inhibition of cholera toxin action.Biochemistry 12:3577

    PubMed  Google Scholar 

  • Cuatrecasas, P. 1974a. Membrane receptors.Annu. Rev. Biochem. 43:169

    PubMed  Google Scholar 

  • Cuatrecasas, P. 1974b. Insulin receptors, cell membranes and hormone-action.Biochem. Pharmacol. 23:2353

    PubMed  Google Scholar 

  • Cuatrecasas, P., Parikh, I., Hollenberg, M. D. 1973. Affinity chromatography and structural analysis ofVibrio cholerae enterotoxin — Ganglioside agarose and the biological effects of ganglioside-containing soluble polymers.Biochemistry 12:4253

    PubMed  Google Scholar 

  • Donta, S. T., King, M., Sloper, K. 1973. Induction of steroidogenesis in tissue culture by cholera enterotoxin.Nature, New Biol. 243:246

    Google Scholar 

  • Edidin, M., Fambrough, D. 1973. Fluidity of the surface of cultured muscle fibers. Rapid lateral diffusion of marked surface antigens.J. Cell Biol. 57:27

    PubMed  Google Scholar 

  • Finkelstein, R. A. 1973. Cholera.CRC Crit. Rev. Microbiol. 2:553

    Google Scholar 

  • Finkelstein, R. A., LoSpalluto, J. J. 1970. Production of highly purified choleragen and choleragenoid.J. Infect. Dis. 121:S63

    PubMed  Google Scholar 

  • Flawia, M. M., Torres, H. N. 1972. Adenylate cyclase activity inNeurospora crassa. I. General properties.J. Biol. Chem. 247:6873

    PubMed  Google Scholar 

  • Frye, C. D., Edidin, M. 1970. The rapid intermixing of cell surface antigens after formation of mouse-human heterokargons.J. Cell Sci. 7:313

    Google Scholar 

  • Gill, D. M., Pappenheimer, A. M., Jr., Brown, R., Kurnick, J. T. 1969. Studies on the adenine dinucleotide in mammalian cell extracts.J. Exp. Med. 129:1

    PubMed  Google Scholar 

  • Guerrant, R. L., Chen, L. C., Sharp, G. W. G. 1972. Intestinal adenyl cyclase activity in canine cholera: Correlation with fluid accumulation.J. Infect. Dis. 125:377

    PubMed  Google Scholar 

  • Hollenberg, M. D., Fishman, P. H., Bennett, V., Cuatrecasas, P. 1974. Cholera toxin and cell growth: Role of membrane gangliosides.Proc. Nat. Acad. Sci. 71:4224

    PubMed  Google Scholar 

  • Holmgren, J., Lonnroth, I., Svennerholm, L. 1973. Tissue receptor for cholera exotoxin: Postulated structure from studies with GM1 ganglioside and related glycolipids.Infect. Immun. 8:208

    PubMed  Google Scholar 

  • Honjo, T., Nishizuka, Y., Kato, I., Hayaishi, O. 1971. Adenosine diphosphate ribosylation of aminoacyl transferase II and inhibition of protein synthesis by diphtheria toxin.J. Biol. Chem. 246:4251

    PubMed  Google Scholar 

  • Hunter, W. M., Greenwood, F. C. 1962. Preparation of iodine-131 labelled human growth hormone of high specific activity.Nature 194:495

    PubMed  Google Scholar 

  • Jacob, F., Siminovitch, L., Wollman, E. L. 1952. Sur La Biosynthese D'Une Colicine Et Sur Son Mode D'Action.Ann. Inst. Pasteur 83:295

    Google Scholar 

  • Kimberg, D. V., Field, M., Gershon, E., Schooley, R. T., Henderson, A. 1973. Effects of cycloheximide on the response of intestinal mucosa to cholera enterotoxin.J. Clin. Invest. 52:1376

    PubMed  Google Scholar 

  • Kimberg, D. V., Field, M., Johnson, J., Henderson, A., Gershon, E. 1971. Stimulation of intestinal mucosal adenyl cyclase by cholera enterotoxin and prostaglandins.J. Clin. Invest. 50:1218

    PubMed  Google Scholar 

  • King, C. A., van Heyningen, W. E. 1973. Inactivation of cholera toxin by sialidaseresistant monosialoganglioside.J. Infect. Dis. 127:639

    PubMed  Google Scholar 

  • LoSpalluto, J. J., Finkelstein, R. A. 1972. Chemical and physical properties of cholera exo-enterotoxin (choleragen) and its spontaneously formed toxoid (choleragenoid).Biochim. Biophys. Acta 275:158

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J. 1951. Protein measurement with the folin-phenol reagent.J. Biol. Chem. 193:265

    PubMed  Google Scholar 

  • Nomura, M. 1963. Mode of action of colicines.Symp. Quant. Biol. XXVIII:315

  • O'Keefe, E., Cuatrecasas, P. 1974. Cholera toxin mimics melanocyte stimulating hormone in inducing differentiation in melanoma cells.Proc. Nat. Acad. Sci. 71:2500

    PubMed  Google Scholar 

  • Peterson, J. W., LoSpalluto, J. J., Finkelstein, R. A. 1972. Localization of cholera toxin in vivo.J. Infect. Dis. 126:617

    PubMed  Google Scholar 

  • Pierce, N. F., Carpenter, C. C. J., Elliot, H. L., Greenough, W. B. III. 1971a. Effects of prostaglandins, theophylline and cholera exotoxin upon transmucosal water and electrolyte movement in the canine jejunum.Gastroenterology 60:20

    Google Scholar 

  • Pierce, N. F., Greenough, W. B. III, Carpenter, C. C. J. 1971b.Vibrio cholerae enterotoxin and its mode of action.Bacteriol. Rev. 35:1

    PubMed  Google Scholar 

  • Poo, M., Cone, R. A. 1974. Lateral diffusion of rhodopsin in the photoreceptor membrane.Nature 247:438

    PubMed  Google Scholar 

  • Ramachandran, J. 1971. A new simple method for separation of adenosine 3′,5′-cyclic monophosphate from other nucleotides and its use in the assay of adenyl cyclase.Analyt. Biochem. 43:227

    PubMed  Google Scholar 

  • Rodbell, M. 1964. Metabolism of isolated fat cells.J. Biol. Chem. 239:375

    PubMed  Google Scholar 

  • Rodbell, M., Lin, M. C., Salomon, Y. 1974. Evidence for independent action of glucagon and nucleotides on the hepatic adenylate cyclase system.J. Biol. Chem. 249:59

    PubMed  Google Scholar 

  • Senior, B. W., Holland, I. B. 1971. The effect of colicin E3 upon the 30 S ribosomal subunit ofEscherichia coli.Proc. Nat. Acad. Sci. 68:959

    PubMed  Google Scholar 

  • Sharp, G. W. G. 1973. Action of cholera toxin on fluid and electrolyte movement in the small intestine.Annu. Rev. Med. 24:19

    PubMed  Google Scholar 

  • Singer, S. J., Nicolson, G. L. 1972. The fluid mosaic model of the structure of cell membranes.Science 175:720

    PubMed  Google Scholar 

  • Symons, R. H. 1968. Modified procedure for the synthesis of32P-labelled ribonucleoside 5′-monophosphate of high specific activity.Biochim. Biophys. Acta 155:609

    PubMed  Google Scholar 

  • van Heyningen, S. 1974. Cholera toxin: Interaction of subunits with ganglioside G M1.Science 183:656

    PubMed  Google Scholar 

  • Vaughan, M., Pierce, N. F., Greenough, W. B. III. 1970. Stimulation of glycerol production in fat cells by cholera toxin.Nature 226:658

    PubMed  Google Scholar 

  • White, A. A., Zenser, T. V. 1971. Separation of cyclic 3′,5′-nucleoside monophosphate from other nucleotides on aluminum oxide columns application to the assay of adenyl cyclase and guanyl cyclase.Analyt. Biochem. 41:372

    PubMed  Google Scholar 

  • Wolff, J., Temple, R., Cook, G. H. 1973. Stimulation of steroid secretion in adrenal tumor cells by choleragen.Proc. Nat. Acad. Sci. 70:2741

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Part of this work was reported at the 1974 meeting of the Federation of American Societies for Experimental Biology (Bennett & Cuatrecasas, 1974).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bennett, V., Cuatrecasas, P. Mechanism of activation of adenylate cyclase byVibrio cholerae enterotoxin. J. Membrain Biol. 22, 29–52 (1975). https://doi.org/10.1007/BF01868162

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868162

Keywords

Navigation