Skip to main content
Log in

Mechanism of action ofVibrio cholerae enterotoxin

Effects on adenylate cyclase of toad and rat erythrocyte plasma membranes

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The characteristics of the cholera toxin-stimulated adenylate cyclase of toad (Bufus marinus) and rat erythrocyte plasma membranes have been examined, with special emphasis on the response to purine nucleotides, fluoride, magnesium and catecholamine hormones. Toad erythrocytes briefly exposed to low concentrations of cholera toxin (40,000 to 60,000 molecules per cell) and incubated 2 to 4 hr at 30°C exhibit dramatic alterations in the kinetic and regulatory properties of adenylate cyclase. The approximateK m for ATP, Mg++ increases from about 1.8 to 3.4mm in the toxinstimulated enzyme. The stimulation by cholera toxin increases with increasing ATP, Mg++ concentrations, from 20% at low levels (0.2mm) to 500% at high concentrations (greater than 3mm). Addition of GTP, Mg++ (0.2mm) restores normal kinetic properties to the toxin-modified enzyme, such that stimulation is most simply explained by an elevation ofV max. GTP enhances the toxin-treated enzyme activity two-to fourfold at low ATP concentrations, but this effect disappears at high levels of the substrate. At 0.6mm ATP and 5mm MgCl2 the apparentK a for GTP, Mg++ is 5 to 10μm. The control (unstimulated) enzyme demonstrates a very small response to the guanyl nucleotide. 5′-ITP also stimulates the toxin-treated enzyme but cGMP, guanine, and the pyrimidine nucleotides have no effect. Cholera toxin also alters the activation of adenylate cyclase by free Mg++, decreasing the apparentK a from about 25 to 5mm. (−)-Epinephrine sensitizes the toad erythrocyte adenylate cyclase to GTP and also decreases the apparentK a for free metal. Sodium fluoride, which cause a 70- to 100-fold activation of enzyme activity, has little effect on sensitivity to GTP, and does not change the apparentK a for Mg++; moreover, it prevents modulation of these parameters by cholera toxin. Conversely, cholera toxin severely inhibits NaF activation, and in the presence of fluoride ion the usual three- to fivefold stimulation by toxin becomes a 30 to 60% inhibition of activity. The toxin-stimulated enzyme can be further activated by catecholamines; in the presence of GTP the (−)-epinephrine stimulation is enhanced by two- to threefold. The increased catecholamine stimulation of toad erythrocyte adenylate cyclase induced by cholera toxin is explained primarily by an increase in the maximal extent of activation by the hormones. Rat erythrocyte adenylate cyclase is also modified by cholera toxin. In the mammalian system the apparent affinity for the hormone appears to be increased. Cholera toxin thus induces profound and nearly permanent changes in adenylate cyclase by a unique process which mimics the stimulation by hormones in important ways, and which also accentuates the normal hormonal response. The relevance of these findings to the mechanism of action of cholera toxin is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avruch, J., Wallach, D. F. H. 1971. Preparation and properties of plasma membrane and endoplasmic reticulum fragments from isolated rat fat cells.Biochim. Biophys. Acta 233:334

    PubMed  Google Scholar 

  • Beckman, B., Flores, J., Witkum, P. A., Sharp, G. W. G. 1974. Studies on the mode of action of cholera toxin. Effects on solubilized adenyl cyclase.J. Clin. Invest. 53:1202

    PubMed  Google Scholar 

  • Bennett, V., Cuatrecasas, P. 1974. Properties of the cholera toxin-stimulated adenylate cyclase of toad and rat erythrocyte plasma membranes and the mechanism of action of cholera toxin.Fed. Proc. 33:1357 (Abstr.)

    Google Scholar 

  • Bennett, V., Cuatrecasas, P. 1975. Mechanism of activation of adenylate cyclase byVibrio cholerae enterotoxin.J. Membrane Biol. 22:29

    Google Scholar 

  • Bennett, V., O'Keefe, E., Cuatrecasas, P. 1975. The mechanism of action of cholera toxin and the mobile receptor theory of hormone receptor-adenylate cyclase interactions.Proc. Nat. Acad. Sci. 72:33

    PubMed  Google Scholar 

  • Bilezikian, J. P., Aurbach, G. D. 1974. The effects of nucleotides on the expression of β-adrenergic adenylate cyclase activity in membranes from turkey erythrocytes.J. Biol. Chem. 249:157

    PubMed  Google Scholar 

  • Birnbaumer, L. 1973. Hormone-sensitive adenylyl cyclases. Useful models for studying hormone receptor functions in cell-free systems.Biochim. Biophys. Acta 300:129

    PubMed  Google Scholar 

  • Birnbaumer, L., Pohl, S. L., Rodbell, M. 1969. Adenyl cyclase in fat cells. I. Properties and the effects of adrenocorticotropin and fluoride.J. Biol. Chem. 244:3468

    PubMed  Google Scholar 

  • Birnbaumer, L., Pohl, S. L., Rodbell, M. 1972. The glucagon sensitive adenyl cyclase system in plasma membranes of rat liver.J. Biol. Chem. 247:2038

    PubMed  Google Scholar 

  • Bockaert, J., Roy, C., Jard, S. 1972. Oxytocin-sensitive adenylate cyclase in frog bladder epitheial cells.J. Biol. Chem. 247:7073

    PubMed  Google Scholar 

  • Bourne, H. R., Lehrer, R. I., Lichtenstein, L. M., Weissmann, G., Zurier, R. 1973. Effects of cholera enterotoxin on adenosine 3′,5′-monophosphate and neutrophil function. Comparison with other compounds which stimulate leukocyte adenyl cyclase.J. Clin. Invest. 52:698

    PubMed  Google Scholar 

  • Boyle, J. M., Gardner, J. D. 1974. Sequence of events mediating the effects of cholera toxin on rat thymocytes.J. Clin. Invest. 53:1149

    PubMed  Google Scholar 

  • Bray, G. 1960. A simple efficient liquid scintillator for counting aqueous solutions in a liquid scintillation counter.Analyt. Biochem. 1:279

    Google Scholar 

  • Chen, L. C., Rohde, J. E., Sharp, G. W. G. 1972. Properties of adenyl cyclase from human jejunal mucosa during naturally acquired cholera and convalescence.J. Clin. Invest. 51:731

    PubMed  Google Scholar 

  • Constantopoulos, A., Najjar, V. 1973. The activation of adenylate cyclase. II. The postulated presence of (A) Adenylate cyclase in phospho (inhibited) form. (B) A dephospho (activated) form with a cyclic adenylate stimulated membrane protein kinase.Biochem. Biophys. Res. Commun. 53:794

    PubMed  Google Scholar 

  • Cuatrecasas, P. 1971. Insulin-receptor interactions in adipose tissue cells: Direct measurement and properties.Proc. Nat. Acad. Sci. 68:1264

    PubMed  Google Scholar 

  • Cuatrecasas, P. 1973a. The interaction ofVibrio cholerae enterotoxin with cell membranes.Biochemistry 12:3547

    PubMed  Google Scholar 

  • Cuatrecasas, P. 1973b. Gangliosides and membrane receptors for cholera toxin.Biochemistry 12:3558

    PubMed  Google Scholar 

  • cuatrecasas, P. 1973c. Cholera toxin-fat cell interaction and the mechanism of activation of the lipolytic response.Biochemistry 12:3567

    PubMed  Google Scholar 

  • Cuatrecasas, P. 1973d.Vibrio cholerae choleragenoid—Mechanism of inhibition of cholera toxin action.Biochemistry 12:3577

    PubMed  Google Scholar 

  • Cuatrecasas, P. 1974a. Membrane receptors.Annu. Rev. Biochem. 43:169

    PubMed  Google Scholar 

  • Cuatrecasas, P. 1974b. Insulin receptors, cell membranes and hormone action.Biochem. Pharmacol. 23:2353

    PubMed  Google Scholar 

  • Cuatrecasas, P., Parikh, I., Hollenberg, M. D. 1973. Affinity chromatography and structural analysis ofVibrio cholerae enterotoxin—Ganglioside agarose and the biological effects of ganglioside-containing soluble polymers.Biochemistry 12:4253

    PubMed  Google Scholar 

  • Donta, S. T., King, M., Sloper, K. 1973. Induction of steroidogenesis in tissue culture by cholera enterotoxin.Nature, New Biol. 243:246

    Google Scholar 

  • Drummond, G. I., Duncan, L. 1970. Adenyl cyclase in cardiac tissue.J. Biol. Chem. 245:976

    PubMed  Google Scholar 

  • Evans, D. J., Chen, L. C., Carlin, G. T., Evans, D. G. 1972. Stimulation of adenyl cyclase byEscherichia coli enterotoxin.Nature, New Biol. 236:137

    Google Scholar 

  • Field, M. 1974. Mode of action of cholera toxin: Stabilization of catecholamine-sensitive adenylate cyclase in turkey erythrocytes.Proc. Nat. Acad. Sci 71:3299

    PubMed  Google Scholar 

  • Finkelstein, R. A. 1973. Cholera.CRC Crit.Rev. Microbiol. 2:553

    Google Scholar 

  • Finkelstein, R. A., Boesman, M., Neoh, S. H., La Rue, M. K., Delaney, R. 1974. Dissociation and recombination of the subunits of the cholera enterotoxin (choleragen).J. Immunol. 113:145

    PubMed  Google Scholar 

  • Finkelstein, R. A., LoSpalluto, J. J. 1969. Pathogenesis of experimental cholera. Preparation and isolation of choleragen and choleragenoid.J. Exp. Med. 130:185

    PubMed  Google Scholar 

  • Finkelstein, R. A., LoSpalluto, J. J. 1970. Production of highly purified choleragen and choleragenoid.J. Infect. Dis. 121:S63

    PubMed  Google Scholar 

  • Flawia, M. M., Torres, H. N. 1972a. Adenylate cyclase activity inNeurospora crassa. I. General properties.J. Biol. Chem. 247:6873

    PubMed  Google Scholar 

  • Flawia, M. M., Torres, H. N. 1972b. Adenylate cyclase activity inNeurospora crassa. II. Kinetics.J. Biol. Chem. 247:6880

    PubMed  Google Scholar 

  • Frye, C. D., Edidin, M. 1970. The rapid intermixing of cell surface antigens after formation of mouse-human heterokargons.J. Cell Sci. 7:313

    Google Scholar 

  • Glynn, I. M., Chappell, J. B. 1964. A simple method for the preparation of32P-labelled adenosine triphosphate of high specific activity.Biochem. J. 90:147

    PubMed  Google Scholar 

  • Gorman, R. E., Bitensky, M. W. 1972. Selective effects of cholera toxin on the adrenaline responsive component of hepatic adenyl cyclase.Nature 235:439

    PubMed  Google Scholar 

  • Harwood, J. P., Rodbell, M. 1973. Inhibition by fluoride ion of hormonal activation of fat cell adenylate cyclase.J. Biol. Chem. 248:4901

    PubMed  Google Scholar 

  • Hewlett, E. L., Guerrant, R. L., Evans, D. J., Greenough, W. B. 1974. Toxins ofVibrio cholerae andEscherichia coli stimulate adenyl cyclase in rat fat cells.Nature, New Biol. 249:371

    Google Scholar 

  • Hollenberg, M. D., Fishman, P. H., Bennett, V., Cuatrecasas, P. 1974. Cholera toxin and cell growth: Role of membrane gangliosides.Proc. Nat. Acad. Sci. 71:4224

    PubMed  Google Scholar 

  • Holmgren, J., Lindholm, L., Lonnroth, I. 1974. Interaction of cholera toxin and toxin derivatives with lymphocytes.J. Exp. Med. 139:801

    PubMed  Google Scholar 

  • Holmgren, J., Lonnroth, I., Ouchterlony, O., Svennerholm, A.-M. 1972. Studies on cholera toxins.J. Gen. Microbiol. 73:XXIX

    Google Scholar 

  • Holmgren, J., Lonnroth, I., Svennerholm, L. 1973. Tissue receptor for cholera exotoxin: Postulated structure from studies with GM1 ganglioside and related glycolipids.Infect. Immun. 8:208

    PubMed  Google Scholar 

  • Hunter, W. M., Greenwood, F. C. 1962. Preparation of iodine-131 labelled human growth hormone of high specific activity.Nature 194:495

    PubMed  Google Scholar 

  • Izatt, R. M., Christensen, J. J., Rytting, J. H. 1971. Sites and thermodynamic quantities associated with proton and metal ion interaction with ribonucleic acid, deoxyribonucleic acid and their constituent bases, nucleosides and nucleotides.Chem. Rev. 71:439

    PubMed  Google Scholar 

  • Kimberg, D. V., Field, M., Johnson, J., Henderson, A., Gershon, E. 1971. Stimulation of intestinal mucosal adenyl cyclase by cholera enterotoxin and prostaglandins.J. Clin. Invest. 50:1218

    PubMed  Google Scholar 

  • King, C. A., van Heyningen, W. E. 1973. Inactivation of cholera toxin by sialidaseresistant monosialoganglioside.J. Infect. Dis. 127:639

    PubMed  Google Scholar 

  • Krishna, G., Harwood, J., Barber, A., Jamieson, G. A. 1972. Requirement for guanosine triphosphate in the prostaglandin activation of adenylate cyclase of platelet membrane.J. Biol. Chem. 247:2253

    PubMed  Google Scholar 

  • Leray, F., Chambaut, A.-M., Hanoune, J. 1972. Adenylate cyclase activity of rat-liver plasma membranes. Hormonal stimulations and effect of adrenalectomy.Biochem. Biophys. Res. Commun. 48:1385

    PubMed  Google Scholar 

  • Lonnroth, I., Holmgren, J. 1973. Subunit structure of cholera toxin.J. Gen. Microbiol. 76:417

    PubMed  Google Scholar 

  • LoSpalluto, J. J., Finkelstein, R. A. 1972. Chemical and physical properties of cholera exo-enterotoxin (choleragen) and its spontaneously formed toxoid (choleragenoid).Biochim. Biophys. Acta 257:158

    PubMed  Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J. 1951. Protein measurement with the folin-phenol reagent.J. Biol. Chem. 193:265

    PubMed  Google Scholar 

  • Mashiter, K., Mashiter, G. D., Hauger, R. L., Field, J. B. 1973. Effects of cholera andE. coli enterotoxins on cyclic adenosine 3′,5′-monophosphate levels and intermediary metabolism in the thyroid.Endocrinology 92:541

    PubMed  Google Scholar 

  • Mosley, W. H., Ahmed, A. 1969. Active and passive immunization in the adult rabbit ileal loop model as an assay for production of antitoxin immunity by cholera vaccines.J. Bacteriol. 100:547

    PubMed  Google Scholar 

  • O'Keefe, E., Cuatrecasas, P. 1974. Cholera toxin mimics melanocyte stimulating hormone in inducing differentiation in melanoma cells.Proc. Nat. Acad. Sci. 71:2500

    PubMed  Google Scholar 

  • Pierce, N. F. 1973. Differential inhibitory effects of cholera toxoids and ganglioside on the enterotoxins ofVibrio cholerae andEscherichia coli.J. Exp. Med. 137:1009

    PubMed  Google Scholar 

  • Ramachandran, J. 1971. A new simple method for separation of adenosine 3′,5′-cyclic monophosphate from other nucleotides and its use in the assay of adenyl cyclase.Analyt. Biochem. 43:227

    PubMed  Google Scholar 

  • Rodbell, M., Birnbaumer, L., Pohl, S. L. 1970. Adenyl cyclase in fat cells. Stimulation by secretin and the effects of trypsin on the receptors for lipolytic hormones.J. Biol. Chem. 245:718

    PubMed  Google Scholar 

  • Rodbell, M., Birnbaumer, L., Pohl, S. L., Krans, H. M. 1971. The glucagon-sensitive adenyl cyclase system in plasma membrane of rat liver.J. Biol. Chem. 246:1877

    PubMed  Google Scholar 

  • Rodbell, M., Lin, M. C., Salamon, Y. 1974. Evidence for independent action of glucagon and nucleotides on the hepatic adenylate cyclase system.J. Biol. Chem. 249:59

    PubMed  Google Scholar 

  • Rosen, O. M., Rosen, S. M. 1968. The effect of catecholamines on adenyl cyclase of frog and tadpole hemolysates.Biochem. Biophys. Res. Commun. 31:82

    PubMed  Google Scholar 

  • Rosen, O. M., Rosen, S. M. 1969. Properties of an adenyl cyclase partially purified from frog erythrocytes.Arch. Biochem. Biophys. 131:449

    PubMed  Google Scholar 

  • Schramm, M., Naim, E. 1970. Adenyl cyclase of rat parotid gland.J. Biol. Chem. 245:3225

    PubMed  Google Scholar 

  • Severson, D. L., Drummond, G. I., Sulakhe, P. V. 1972. Adenylate cyclase in skeletal muscle. Kinetic properties and hormonal stimulation.J. Biol. Chem. 247:2949

    PubMed  Google Scholar 

  • Sharp, G. W. G. 1973. Action of cholera toxin on fluid and electrolyte movement in the small intestine.Annu. Rev. Med. 24:19

    PubMed  Google Scholar 

  • Sharp, G. W. G., Hynie, S. 1971. Stimulation of intestinal adenyl cyclase by cholera toxin.Nature 229:266

    PubMed  Google Scholar 

  • Sharp, G. W. G., Hynie, S., Ebel, H., Parkinson, D. K., Witkum, P. 1973. Properties of adenyl cyclase in mucosa cells of the rabbit ileum and the effect of cholera toxin.Biochim. Biophys. Acta 309:339

    PubMed  Google Scholar 

  • Sheppard, H., Burghardt, C. 1969. Adenyl cyclase in non-nucleated erythrocytes of several mammalian species.Biochem. Pharmacol. 18:2576

    PubMed  Google Scholar 

  • Sheppard, H., Burghardt, C. 1970. The stimulation of adenyl cyclase of rat erythrocyte ghosts.Molec. Pharmacol. 6:425

    Google Scholar 

  • Siegel, M. I., Cuatrecasas, P. 1974. Epinephrine stimulation of fat cell adenylate cyclase: Regulation by guanosine-5′-triphosphate and magnesium ion.Molec. Cell. Endocrinol. 1:89

    PubMed  Google Scholar 

  • Singer, S. J., Nicolson, G. L. 1972. The fluid mosaic model of the structure of cell membranes.Science 175:720

    PubMed  Google Scholar 

  • Symons, R. H. 1968. Modified procedure for the synthesis of32P-labelled ribonucleoside 5′-monophosphate of high specific activity.Biochim. Biophys. Acta 155:609

    PubMed  Google Scholar 

  • van Heyningen, S. 1974. Cholera toxin: Interaction of subunits with ganglioside GM1.Science 183:656

    PubMed  Google Scholar 

  • van Heyningen, W. E. 1973. A note on the specific fixation, specific deactivation and non-specific inactivation of bacterial toxins by gangliosides.Nauyn-Schmiedeberg's Arch. Pharmacol. 276:297

    Google Scholar 

  • van Heyningen, W. E., Carpenter, W. B., Pierce, N. F., Greenough, W. B. III. 1971. Deactivation of cholera toxin by ganglioside.J. Infect. Dis. 124:415

    PubMed  Google Scholar 

  • van Heyningen, W. E., Mellanby, J. 1968. The effect of cerebroside and other lipids on the fixation of tetanus toxin by gangliosides.J. Gen. Microbiol. 52:447

    Google Scholar 

  • van Heyningen, W. E., Miller, P. A. 1961. The fixation of tetanus toxin by gangliosides.J. Gen. Microbiol. 24:107

    PubMed  Google Scholar 

  • Vaughan, M., Pierce, N. F., Greenough, W. B. III. 1970. Stimulation of glycerol production in fat cells by cholera toxin.Nature 226:658

    PubMed  Google Scholar 

  • Walker, W. A., Field, M., Isselbacher, K. J. 1974. Specific binding of cholera toxin to isolated intestinal microvillus membranes.Proc. Nat. Acad. Sci. 71:320

    PubMed  Google Scholar 

  • White, A. A., Zenser, T. V. 1971. Separation of cyclic 3′,5′-nucleoside monophosphate from other nucleotides on aluminum oxide columns application to the assay of adenyl cyclase and guanyl cyclase.Analyt. Biochem. 41:372

    PubMed  Google Scholar 

  • Wolff, J., Cook, G. H. 1973. Activation of thyroid membrane adenylate cyclase by purini nucleotides.J. Biol. Chem. 248:350

    PubMed  Google Scholar 

  • Wolff, J., Temple, R., Cook, G. H. 1973. Stimulation of steroid secretion in adrenal tumor cells by choleragen.Proc. Nat. Acad. Sci. 70:2741

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Part of this work was reported at the 1974 meeting of the Federation of American Societies for Experimental Biology (Bennett & Cuatrecasas, 1974).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bennett, V., Cuatrecasas, P. Mechanism of action ofVibrio cholerae enterotoxin. J. Membrain Biol. 22, 1–28 (1975). https://doi.org/10.1007/BF01868161

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868161

Keywords

Navigation