Skip to main content
Log in

Proton transport by bacteriorhodopsin through an interface film

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Interface films of purple membrane and lipid containing spectroscopically intact and oriented bacteriorhodopsin have been used as a model system to study the function of this protein. Small positive charges in surface potential (<1 mV) are detected upon illumination of these films at the air-water interface. These photopotentials, are not affected by overlaying the interface film with a thin layer (0.3 mm) of decane. However, they are dramatically increased when lipid soluble proton carriers FCCP or DNP are added to the decane. The polarity of the photopotential indicates that, in the light, positive charges are transported through the interface from the aqueous to the organic phase. The action spectrum of the photopotential is identical to the absorption spectrum of bacteriorhodopsin. Since bacteriorhodopsin molecules are oriented with their intracellular surface towards the aqueous subphase, the characteristics of the photopotential indicate that in the light bacteriorhodopsin translocates protons from its intracellular to its extracellular surface. The kinetics of the photopotential reveal that the rate and extent of proton transport are proportional both to the fraction of bacteriorhodopsin molecules excited and to the concentration of proton acceptor. The photopotentials result from changes in the ionic distribution across the decane-water interface and can be cancelled by lipid soluble anions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bakker, E.P., Rottenberg, H., Caplan, R. 1976. An estimation of the light induced electrochemical potential difference of protons across the membrane ofHalobacterium halobium.Biochim. Biophys. Acta 440:557

    PubMed  Google Scholar 

  • Blaurock, A.E., Stoeckenius, W. 1971. Structure of the purple membrane.Nature New Biol. 233:152

    Google Scholar 

  • Bogomolni, R. 1977. Light energy conservation processes inHalobacterium halobium cells.Fed. Proc. (in press)

  • Bogomolni, R., Baker, R., Lozier, R., Stoeckenius, W. 1976. Light-driven proton translocation inHalobacterium halobium.Biochim. Biophys. Acta 440:68

    PubMed  Google Scholar 

  • Boguslavsky, L.I., Kondrashin, A.A., Kozlov, I.A., Metelsky, S.T., Skulachev, V.P., Volkov, A.G. 1975. Charge transfer between water and octane phases by soluble mitochondrial ATPase (F1) bacteriorhodopsin and respiratory chain enzymes,FEBS Lett. 50:223

    PubMed  Google Scholar 

  • Danon, A., Stoeckenius, W. 1974. Photophosphorylation inHalobacterium halobium.Proc. Nat. Acad. Sci. USA 71:1234

    Google Scholar 

  • Davies, J.T., Rideal, E.K. 1955. Interfacial potentials.Can. J. Chem. 33:947

    Google Scholar 

  • Davies, J.T., Rideal, E.K. 1963. Interfacial Phenomena. Academic Press, New York

    Google Scholar 

  • Dean, R.B., Gatty, O., Rideal, E.K. 1940. Absorption potentials.Trans. Faraday Soc. 36:161

    Google Scholar 

  • Drachev, L.A., Frolov, V.N., Kaulen, A.D., Liberman, E.A., Ostrumov, S.A., Plakunova, V.G., Semenov, A.Y., Skulachev, V.P. 1976. Reconstitution of biological molecular generators of electric current.J. Biol. Chem. 251:7059

    PubMed  Google Scholar 

  • Drachev, L.A., Kaulen, A.D., Ostroumov S.A., Skulachev, V.P. 1974. Electrogenesis by bacteriorhodopsin incorporated in a planar phospholipid membrane,FEBS Lett.39:43

    PubMed  Google Scholar 

  • Haydon, D.A. 1964. The electrical double layer and electrokinetic phenomena.Recent Prog. Surf. Sci. 1:94

    Google Scholar 

  • Haydon, D.A., Hladky, S.B. 1972. Ion transport across thin lipid membranes: A critical discussion of mechanisms in selected systems.Q. Rev. Biophys. 5:187

    PubMed  Google Scholar 

  • Henderson, R. 1975. The structure of the purple membrane fromHalobacterium halobium: Analysis of the X-ray diffraction pattern.J. Mol. Biol. 93:123

    Google Scholar 

  • Herrmann, T.R., Rayfield, G.W. 1976. A measurement of the proton current generated by bacteriorhodopsin in black lipid membranes.Biochim. Biophys. Acta 443:623

    PubMed  Google Scholar 

  • Hwang, S.-B., Korenbrot, J.I., Stoeckenius, W. 1977. Structural and spectroscopic characteristics of bacteriorhodopsin in air-water interface films.J. Membrane Biol. 36:115

    Google Scholar 

  • Hwang, S.-B., Stoeckenius, W. 1977. Purple membrane vesicles: Morphology and proton translocation.J. Membrane Biol. 33:325

    Google Scholar 

  • Kayushin, L.P., Skulachev, V.P. 1974. Bacteriorhodopsin as an electrogenic proton pump: Reconstitution of bacteriorhodopsin proteoliposomes generating ΔΨ and ΔpH.FEBS Lett. 39:39

    PubMed  Google Scholar 

  • Ketterer, B., Neumcke, B., Lauger, P. 1971. Transport mechanism of hydrophobic ions through lipid bilayer membranes.J. Membrane Biol. 5:225

    Google Scholar 

  • Korenbrot, J.I. 1977. Some consideration on the ion transport properties of rod disc membranes.Biophys. Struct. Mechanism

  • Liberman, E.A., Toplay, A. 1968. Selective transport of ions through bimolecular phospholipid membranes.Biophys. Biochim. Acta 163:125

    Google Scholar 

  • Lozier, R.H., Niederberger, W., Bogomolni, R.A., Hwang, S.-B., Stoeckenius, W. 1976. Kinetics and stoichiometry of light-induced proton release and uptake from purple membrane fragments,H. Halobium cell envelopes, and phospholipid vesicles containing oriented purple membrane.Biochim. Biophys. Acta 440:545

    PubMed  Google Scholar 

  • McLaughlin, S. 1972. The mechanism of action of DNP on phospholipid bilayer membranes.J. Membrane Biol. 9:361

    Google Scholar 

  • Mitchell, P. 1961. Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism.Nature (London) 191:144

    Google Scholar 

  • Oesterhelt, D. 1975. The purple membrane ofHalobacterium halobium: A new system for light energy conversion. Ciba Foundation Symposium 31 (new series): 147. Elsevier, Amsterdam

    Google Scholar 

  • Oesterhelt, D., Stoeckenius, W. 1973. Function of a new photoreceptor membrane.Proc. Nat. Acad. Sci. USA 70:2853

    PubMed  Google Scholar 

  • Parsegian, A. 1969. Energy of an ion crossing a low dielectric membrane: Solution to four relevant electrostatic problems.Nature (London) 221:844

    Google Scholar 

  • Racker, 1973. A new procedure for the reconstitution of biological, active phospholipid vesicles.Biochem. Biophys. Res. Commun. 55:224

    PubMed  Google Scholar 

  • Racker, E., Hinkle, P.C. 1974. Effect of temperature on the function of a proton pump.J. Membrane Biol. 17:181

    Google Scholar 

  • Racker, E., Stoeckenius, W. 1974. Reconstitution of purple membrane vesicles catalyzing light-driven proton uptake and adenosine triphosphate formation.J. Biol. Chem. 249:662

    PubMed  Google Scholar 

  • Renthal, R., Lanyi, J.K. 1976. Light-induced membrane potential and pH gradient inHalobacterium halobium envelope vesicles.Biochemistry 15:2136

    PubMed  Google Scholar 

  • Romeo, D., Hinckley, A., Rothfield, L. 1970. Reconstitution of a functional membrane enzyme system in a monomolecular, film.J. Mol. Biol. 53:491

    PubMed  Google Scholar 

  • Shieh, P., Packer, L. 1976. Photo-induced potentials across a polymer stabilized planar membrane in the presence of bacteriorhodopsin.Biochem. Biophys. Res. Commun. 71:603

    PubMed  Google Scholar 

  • Stoeckenius, W., Hwang, S.-B., Korenbrot, J.I. 1977. Proton translocation by bacteriorhodopsin in model systemsIn: Structure of Biological Membranes. S. Abrahamsson and I. Pascher, editors. Plenum Press, New York

    Google Scholar 

  • Verger, R., Pattus, F. 1976. Spreading of membranes at the air/water interface.Chem. Phys. Lipids 16:285

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, SB., Korenbrot, J.I. & Stoeckenius, W. Proton transport by bacteriorhodopsin through an interface film. J. Membrain Biol. 36, 137–158 (1977). https://doi.org/10.1007/BF01868148

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868148

Keywords

Navigation