Advertisement

The Journal of Membrane Biology

, Volume 36, Issue 1, pp 115–135 | Cite as

Structural and spectroscopic characteristics of bacteriorhodopsin in air-water interface films

  • San-Bao Hwang
  • Juan I. Korenbrot
  • Walther Stoeckenius
Article

Summary

A suspension of purple membrane fragments in a solution of soya phosphatidyl-choline in hexane is spread at an air-water interface. Surface pressure and surface potential measurements indicate that the membrane fragments and lipids organize at the interface as an insoluble film. Electron microscopy of shadow-cast replicas of the film reveal that in the bacteriorhodopsin to soya PC weight ratio range of 2∶1 to 10∶1, these films consist of nonoverlapping membrane fragments which occupy approximately 35% of the surface area and are separated by a lipid monolayer. Furthermore, the membrane fragments are oriented, with their intracellular surface towards the aqueous subphase. Nearly all the bacteriorhodopsin molecules at the interface are spectroscopically intact and exhibit visible spectral characteristics identical to those in aqueous suspensions of purple membrane and in intact bacteria. In addition, bacteriorhodopsin in air-dried interface films show spectral changes upon dark-adaptation and upon flash illumination similar to those observed in aqueous suspensions of purple membrane, but with slower kinetics. The kinetics of the spectral changes in interface films can be made nearly the same as in aqueous suspension by immersing the films in water.

Keywords

Aqueous Suspension Spectral Change Spectroscopic Characteristic Membrane Fragment Interface Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, D.J., Evans, M.T.A., Mitchell, J.R., Phillips, M.C., Rees, P.M. 1971. Adsorption of lysozyme and some acetyl derivatives at the air-water interface.J. Polym. Sci. Part C 34:167Google Scholar
  2. Blaurock, A.E. 1975. Bacteriorhodopsin: A transmembrane pump containing α-helix.J. Mol. Biol. 93:139PubMedGoogle Scholar
  3. Blaurock, A.E., Stoeckenius, W. 1971. Structure of the purple membrane.Nature New Biol. 233:152PubMedGoogle Scholar
  4. Bligh, E.G., Dyer, W.J. 1959. A rapid method of total lipid extraction and purification.Can. J. Biochem. 37:911PubMedGoogle Scholar
  5. Blodgett, K.B. 1935. Films built by depositing successive monomolecular layers on a solid surface.J. Am. Chem. Soc. 57:1007Google Scholar
  6. Bogomolni, R.A., Hwang, S.-B. Tseng, Y.-W., King, G.I., Stoeckenius, W. 1977. Orientation of the bacteriorhodopsin transition dipole.,Biophys. Soc. (Abstr.) 98a Google Scholar
  7. Boguslavsky, L.I., Kondrshin, A.A., Kozlov, I.A., Metelsky, S.T., Skulachev, V.P., Volkov, A.G. 1975. Charge transfer between water and octane phases by soluble mitochondrial ATPase (F1), bacteriorhodopsin and respiratory chain enzymes.FEBS Lett. 50:223PubMedGoogle Scholar
  8. Bridgen, J., Walker, I.D. 1976. Photoreceptor protein from the purple membrane ofHalobacterium halobium: Molecular weight and retinal binding site.Biochemistry 15:792PubMedGoogle Scholar
  9. Danon, A., Stoeckenius, W. 1974. Photophosphorylation inHalobacterium halobium.Proc. Nat. Acad. Sci. USA 71:1234PubMedGoogle Scholar
  10. Das, M.L., Crane, F.L. 1964. Proteolipids. I. Formation of phospholipid-cytochrome c complexes.Biochemistry 3:696Google Scholar
  11. Dencher, N., Wilms, M. 1975. Flash photometric experiments on the photochemical cycle of bacteriorhodopsin.Biophys. Struct. Mechanism 1:259Google Scholar
  12. Drachev, L.A., Frolov, V.N., Kaulen, A.D., Liberman, E.A., Ostrumov, S.A., Plankunova, V.G., Semenov, A.Y., Skulachev, V.P. 1976. Reconstitution of biological molecular generators of electric current.J. Biol. Chem. 251:7059PubMedGoogle Scholar
  13. Fisher, K.A. 1975. “Half” membrane enrichment: Verification be electron microscopy.Science 190:983PubMedGoogle Scholar
  14. Gaines G.L., Jr. 1966. Insoluble Monolayers at Liquid-Gas Interfaces. Interscience, New YorkGoogle Scholar
  15. Gitler, C., Montal, M. 1972. Thin-proteolipid films: A new approach to the reconstitution of biological membranes.Biochem. Biophys. Res. Commun. 47:1486PubMedGoogle Scholar
  16. Goerke, J., Harper, H.H., Borowitz, M. 1970. The interaction of calcium with monolayers of stearic acid.In: Surface Chemistry of Biological System. M. Blank, editor. Plenum Press, New York-LondonGoogle Scholar
  17. Hanahan, D.J., Dittmer, J.C., Warashina, E. 1957. A column chromatographic separation of classes of phospholipids.J. Biol. Chem. 228:685PubMedGoogle Scholar
  18. Henderson, R. 1975. The structure of the purple membrane fromHalobacterium halobium: Analysis of the X-ray diffraction pattern.J. Mol. Biol. 93:123PubMedGoogle Scholar
  19. Henderson, R., Unwin, P.N.T. 1975. Three dimensional model of purple membrane obtained by electron microscopy.Nature (London) 257:28Google Scholar
  20. Hwang, S.-B., Korenbrot, J.I., Stoeckenius, W. 1977. Proton transport by bacteriorhodopsin through an interface film.J. Membrane Biol. 36:137Google Scholar
  21. Hwang, S.-B., Stoeckenius, W. 1977. Purple membrane vesicles: Morphology and proton translocation.J. Membrane Biol. 33:325Google Scholar
  22. James, L.K., Augenstein, L.G. 1966. Adsorption of enzymes at interfaces: Film formation and the effect on activity.Adv. Enzymol. 28:1PubMedGoogle Scholar
  23. Kriebel, A.N., Albrecht, A.C. 1976. Excitonic interaction among three chromophores: An application to the purple membrane ofHalobacterium halobium.J. Chem. Phys. 65:4575Google Scholar
  24. Kung, M. Chu, Devault, D., Hess, B., Oesterhelt, D. 1975. Photolysis of bacterial rhodopsin.Biophys. J. 15:907PubMedGoogle Scholar
  25. Kushwaha, S.C., Kates, M., Martin, W.G. 1975. Characterization and composition of the purple membrane and red membrane fromHalobacterium cutirubrum.Can. J. Biochem. 53:284PubMedGoogle Scholar
  26. Liebman, P.A. 1962. In situ microspectrophotometric studies on the pigments of single retinal rods.Biophys. J. 2:161PubMedGoogle Scholar
  27. Loeb, G.I. 1971. Spectroscopy of protein monolayers: A transition in β-lactoglobulin films.J. Polym. Sci. Part C 34:63Google Scholar
  28. Lozier, R.H., Bogomolni, R.A., Stoeckenius, W. 1975. Bacteriorhodopsin: A light proton pump inH. halobium.Biophys. J. 15:955PubMedGoogle Scholar
  29. Lozier, R.H., Niederberger, W., Bogomolni, R.A., Hwang, S.-B., Stoeckenius, W. 1976. Kinetics and stoichiometry of light-induced proton release and uptake from purple membrane fragments,H. halobium cell envelopes, and phospholipid vesicles containing oriented purple membrane.Biochim. Biophys. Acta 440:545PubMedGoogle Scholar
  30. Malcolm, B.R. 1968. Molecular structure and deuterium exchange in monolayers of synthetic polypeptides.Proc. Roy. Soc. A 305:363Google Scholar
  31. Mao, B., Becher, B., Kilbride, P., Ebrey, T.G., Honig, B. 1977. Exciton, interaction and chromophore orientation in the purple membrane.Biophys. Soc. (Abstr.) 76a Google Scholar
  32. Miller, I.R., Bach, D. 1973. Biopolymers at Interfaces.In: Surface and Colloid Sci. Vol. 6, p. 185. E. Matijevic, editor. John Wiley and Sons, New YorkGoogle Scholar
  33. Mitchell, P. 1961. Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism.Nature (London) 191:144Google Scholar
  34. Montal, M., Mueller, P. 1972. Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties.Proc. Nat. Acad. Sci. U.S.A. 69:3561Google Scholar
  35. Oesterhalt, D. 1975. The purple membrane ofHalobacterium halobium: A new system for light energy conversion. Ciba Foundation Symposium 31 (new series). p.147. Elsevier, AmsterdamGoogle Scholar
  36. Oesterhalt, D., Hess, B. 1973. Reversible photolysis of the purple complex in the purple membrane ofH. halobium.Eur. J. Biochem. 37:316PubMedGoogle Scholar
  37. Oesterhelt, D., Stoeckenius, W. 1973. Function of a new photoreceptor membrane.Proc. Nat. Acad. Sci. USA 70:2853PubMedGoogle Scholar
  38. Oesterhelt, D., Stoeckenius, W. 1974. Isolation of the cell membrane ofH. halobium and its fraction into red and purple membrane.In: Methods in Enzymology, Biomembranes Vol. 31. S. Fleischer and R. Estabrook, editors. Academic Press, New YorkGoogle Scholar
  39. Racker, E., Stoeckenius, W. 1974. Reconstitution of purple membrane vesicles catalyzing light-driven proton uptake and adenosine triphosphate formation.J. Biol. Chem. 249:662PubMedGoogle Scholar
  40. Renthal, R., Lanyi, J.K. 1976. Light-induced membrane potential and pH gradient inHalobacterium halobium envelope vesicles.Biochemistry 15:2136PubMedGoogle Scholar
  41. Tsofina, L.M., Liberman, E.A., Babakov, A.V. 1966. Production of bimolecular protein-lipid membranes in aqueous solution.Nature (London) 212:681Google Scholar
  42. Wald, G., Durell, J., St. George, R.C.C. 1950. The light reaction in the bleaching of rhodopsin.Science 17:179Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1977

Authors and Affiliations

  • San-Bao Hwang
    • 1
  • Juan I. Korenbrot
    • 1
  • Walther Stoeckenius
    • 1
  1. 1.Departments of Physiology and Biochemistry and Cardiovascular Research InstituteUniversity of California School of MedicineSan Francisco

Personalised recommendations