Skip to main content
Log in

Chloride transport and the membrane potential in the marine alga,Halicystis parvula

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The relationship between the rate of Cl transport and the electrical properties ofHalicystis parvula was investigated. Three metabolic inhibitors-darkness, cyanide (2mm), and low temperature (4°C)-all rapidly and reversibly reduce both the short circuit current (SCC), which is a measure of net Cl transport, and the vacuole electrical potential (PD). Plotting thePD vs. SCC for inhibited cells yields a linear regression with ay-intercept of zero. ThePD is also greatly reduced when the [Cl] of the external medium is lowered. Raising the external [K+] produces an appreciable, but less than Nernstian, depolarization, while increasing the external [H+] tenfold has no net effect on thePD. Decreasing the external [Na+] by tenfold produces only a slight depolarization. Thus, the outer plasma membrane appears to be moderately selective for K+ over Na+ or H+. The effects of ion substitutions in the vacuolar perfusing solutions on thePD reveal that the vacuolar membrane does not discriminate electrically between Cl and the much larger anions, isethionate and benzenesulfonate, or between Na+ and K+. The data suggest that in internally perfused cells ofH. parvula generation of thePD of −50 to −60 mV by a transport system involving only electroneutral pumps is unlikely and that most of thisPD is generated by an electrogenic Cl pump.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blinks, L.R. 1932. Protoplasmic potentials inHalicystis. II. The effects of potassium on two species with different saps.J. Gen. Physiol. 16:147

    Google Scholar 

  • Blinks, L.R. 1935. Protoplasmic potentials inHalicystis. IV. Vacuolar perfusion with artificial sap and seawater.J. Gen. Physiol. 18:409

    Google Scholar 

  • Blinks, L.R. 1940. The relations of bioelectric phenomena to ionic permeability and to metabolism in large plant cells.Cold Spring Harbor Symp. 8:204

    Google Scholar 

  • Blinks, L.R. 1949. The source of the bioelectric potentials in large plant cells.Proc. Nat. Acad. Sci. USA 35:566

    PubMed  Google Scholar 

  • Blinks, L.R., Darsie, M.L., Skow, R.K. 1938. Bioelectric potentials inHalicystis. VII. The effects of low oxygen tension.J. Gen. Physiol. 33:255

    Google Scholar 

  • Dixon, W.J., Massey, F.J. 1957. Introduction to statistical analysis. (2nd ed.) McGraw-Hill, New York

    Google Scholar 

  • Ginzburg, B.Z., Hogg, J. 1967. What does a short circuit current measure in biological systems?J. Theor. Biol. 14:316

    Google Scholar 

  • Graves, J.S. 1974. Ion transport and electrical properties of the marine alga,Halicystis parvula. Ph. D. Dissertation. University Microfilms, Ann Arbor

    Google Scholar 

  • Graves, J.S., Gutknecht, J. 1976. Ion transport studies and determination of the cell wall elastic modulus in the marine alga,Halicystis parvula.J. Gen. Physiol. 67:579

    PubMed  Google Scholar 

  • Graves, J.S., Gutknecht, J. 1977. Current-voltage relationships and the voltage sensitivity of the Cl pump inHalicystis parvula.J. Membrane Biol. 36:83

    Google Scholar 

  • Higinbotham, N. 1973. Electropotentials in plant cells.Annu. Rev. Plant Physiol. 24:25

    Google Scholar 

  • Holm-Hansen, O. 1970. ATP levels in algal cells as influenced by environmental conditions.Plant Cell Physiol. 11:689

    Google Scholar 

  • Johansen, C., Lüttge, U. 1974. Respiration and photosynthesis as alternative energy sources for chloride uptake byTradescantia albiflora leaf cells.Z. Pflanzenphysiol. 71:189

    Google Scholar 

  • Kishimoto, U. 1965. Voltage clamp and internal perfusion studies onNitella internodes.J. Cell. Comp. Physiol. 66:43

    Google Scholar 

  • Koefoed-Johnson, V., Ussing, H.H. 1958. The nature of the frog skin potential.Acta Physiol. Scand. 42:298

    PubMed  Google Scholar 

  • Kotyk, A., Janácek, K. 1970. Cell Membrane Transport. Plenum Press, New York

    Google Scholar 

  • Lilley, R. McC., Hope, A.B. 1971a. Chloride transport and photosynthesis in cells ofGriffithsia.Biochim. Biophys. Acta 226:161

    PubMed  Google Scholar 

  • Lilley, R. McC., Hope, A.B. 1971b. Adenine nucleotide levels in cells of the marine algaGriffithsia.Aust. J. Biol. Sci. 24:1351

    Google Scholar 

  • MacRobbie, E.A.C. 1970. The active transport of ions in plant cells.Q. Rev. Biophys. 3:251

    PubMed  Google Scholar 

  • Ouitrakul, R., Izawa, S. 1973. Electron transport and photophosphorylation in chloroplasts as a function of the electron acceptor. II. Acceptor-specific inhibition by KCN.Biochim. Biophys. Acta 305:105

    PubMed  Google Scholar 

  • Rapoport, S.I. 1970. The sodium-potassium exchange pump: Relation of metabolism to electrical properties of the cell. I. Theory.Biophys. J. 10:246

    PubMed  Google Scholar 

  • Richards, J.L., Hope, A.B. 1974. The role of protons in determining membrane electrical characteristics inChara corallina.J. Membrane Biol. 16:121

    Google Scholar 

  • Saddler, H.D.W. 1970. The membrane potential ofAcetabularia mediterranea.J. Gen. Physiol. 55:802

    PubMed  Google Scholar 

  • Slayman, C. 1970. Correlated changes in membrane potential and ATP concentrations inNeurospora.Nature (London) 226:274

    Google Scholar 

  • Slayman, C.L., Long, W.S., Lu, C.Y.-H. 1973. The relationship between ATP and an electrogenic pump in the plasma membrane ofNeurospora crassa.J. Membrane Biol. 14:305

    Google Scholar 

  • Spanswick, R.M. 1972. Evidence for an electrogenic ion pump.Biochim. Biophys. Acta 288:73

    PubMed  Google Scholar 

  • Staverman, A.J. 1952. Non-equilibrium thermodynamics of membrane processes.Trans. Faraday Soc. 48:176

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graves, J.S., Gutknecht, J. Chloride transport and the membrane potential in the marine alga,Halicystis parvula . J. Membrain Biol. 36, 65–81 (1977). https://doi.org/10.1007/BF01868144

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868144

Keywords

Navigation