Advertisement

The Journal of Membrane Biology

, Volume 8, Issue 1, pp 363–388 | Cite as

Studies concerning the possible reconstitution of an active cation pump across an artificial membrane

  • M. K. Jain
  • F. P. White
  • A. Strickholm
  • E. Williams
  • E. H. Cordes
Article

Summary

The cortical tissue of rat brain was fractionated through zonal centrifugation in a continuous sucrose density gradient, yielding a variety of morphologically distinct membrane fragments derived from nerve-end particles possessing variable levels of activity of Na, K-dependent Mg-sensitive ATPase (Na, K-ATPase) and other enzymes. Upon addition of certain of the zonal fractions, particularly those rich in the ATPase and acetylcholinesterase activities, to one side of planar artificial membranes, formed from mixtures of oxidized cholesterol and alkanes and bathed in a solution containing sodium, potassium, and magnesium ions, direct current membrane resistance fell from one to three orders of magnitude. Subsequent addition of ATP to the same side of the membrane to which the ATPase was added (thecis side) led to the development of net short-circuit current flow and open-circuit potential across the membrane (thecis side being negative with respect to thetrans side). Development of the short-circuit current and open-circuit potential is dependent upon the presence of all the substrates of Na, K-ATPase as well as that of the enzyme itself. The net current flow is inhibited and the open-circuit potential discharged by the addition of ouabain to thetrans side of the membrane, of phospholipase A to thecis side, or of trypsin to either side of the membrane. These observations provide circumstantial evidence for the reconstitution of the active cation pump across the artificial bilayer. Efforts to effect a similar reconstitution across membranes of this and other compositions employing Na, K-ATPase preparations from beef heart, beef brain, cat brain, human red cells, rabbit kidney, and rat brain microsomes failed.

Keywords

Ouabain Current Flow Sucrose Density Gradient Acetylcholinesterase Activity Artificial Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Banerjee, S. P., Dwosh, I. L., Khanna, V. K., Sen, A. K. 1970. Solubilization of guinea pig kidney (Na++K+)-ATPase with Lubrol W and Triton X-100.Biochim. Biophys. Acta 211:345.Google Scholar
  2. 2.
    Baskin, L. S., Cipollini, N., Wyembek, D., Beneski, D. 1970. A rapid assay of Na, K-ATPase.Biophys. Soc. Abstr. 116a; alsopersonal communication.Google Scholar
  3. 3.
    Bean, R. C., Shepherd, W. C., Chen, H., Eichner, J. 1969. Discrete conductance fluctuations in lipid bilayer protein membranes.J. Gen. Physiol. 53:741.Google Scholar
  4. 4.
    Cantow, M. J. R., Johnson, J. F. 1967. Column fractionation of polymers. XIII. The use of porous glass as a column packing for gel permeation chromatography.J. Appl. Sci. 11:1851.Google Scholar
  5. 5.
    Ehrenstein, G., Lecar, H., Nossal, R. 1970. The nature of the negative resistance in bimolecular lipid membranes containing excitability-inducing material.J. Gen. Physiol. 55:119.Google Scholar
  6. 6.
    Hatefi, Y., Hanstein, W. G. 1969. Solubilization of particulate proteins and nonelectrolytes by chaotropic agents.Proc. Nat. Acad. Sci. 62:1129.Google Scholar
  7. 7.
    Herrera, F. C. 1970. Frog skin and toad bladder.Membranes and Ion Transport 3:1.Google Scholar
  8. 8.
    Hill, T. L. 1970. Analysis of a model for active transport.Proc. Nat. Acad. Sci. 65:409.Google Scholar
  9. 9.
    Hodgkin, A. L., Keynes, R. D. 1955. Active transport of cations in giant axons fromSepia andLoligo.J. Physiol. 128:28.Google Scholar
  10. 10.
    Jain, M. K., Strickholm, A., Cordes, E. H. 1969. Reconstitution of an ATP-mediated active transport system across black lipid membranes.Nature 222:871.Google Scholar
  11. 11.
    Jencks, W. P., Regenstein, J. 1969. Ionization constants of acids and bases.In: Handbook of Biochemistry. H. A. Sober, editor. p. J-150. Chemical Rubber Co., Cleveland, Ohio.Google Scholar
  12. 12.
    Jorgensen, P. L., Skou, J. C. 1971. Purification and characterization of (Na++K+)-ATPase. I. The influence of detergents on the activity of (Na++K+)-ATPase in preparations from the outer medulla of rabbit kidney.Biochim. Biophys. Acta 233:366.Google Scholar
  13. 13.
    Kamel, A. M., Felmeister, A., Weiner, N. D. 1971. Surface pressure-surface area characteristics of a series of autooxidation products of cholesterol.J. Lipid. Res. 12:155.Google Scholar
  14. 14.
    Kernan, R. P. 1970. Electrogenic or linked transport.Membranes and Ion Transport.1:395.Google Scholar
  15. 15.
    Klingman, G. I., Klingman, J. D., Pliszczuk, A. 1970. Acetyl- and pseudo-cholinesterase activities in sympathetic ganglia of rats.J. Neurochem. 15: 1121.Google Scholar
  16. 16.
    Lowe, A. G. 1968. Enzyme mechanism for the active transport of sodium and potassium ions in animal cells.Nature 219: 934.Google Scholar
  17. 17.
    Mahler, H. R., Cotman, C. W. 1970. Insoluble proteins of the synaptic plasma membrane.In: Protein Metabolism of the Nervous System. A. Lajtha, editor. p. 151. Plenum Press, New York.Google Scholar
  18. 18.
    Majer, H. 1971. Labilizing effect of minute glass particles on black lipid membranes and the stabilizing action of a lipophilic glucofuranose derivative.Agents and Actions 2:33.Google Scholar
  19. 19.
    McBride, W. J., Mahler, H. R., Moore, W. J., White, F. P. 1970. Isolation and characterization of membranes from rat cerebral cortex.J. Neurobiol. 2: 73; also,data to be published.Google Scholar
  20. 20.
    Middleton, H. W. 1970. Kinetics of monovalent ion activation of the (Na++K+)-dependent adenosine triphosphatase and a model for ion translocation and its inhibition by the cardiac glycosides.Arch. Biochem. Biophys. 136: 280.Google Scholar
  21. 21.
    Mueller, P., Rudin, D. O. 1969. Bimolecular lipid membranes: Techniques of formation, study of electrical properties, and induction of ionic gating phenomena.In: Laboratory Techniques in Membrane Biophysics. H. Passow and R. Sampfli, editors. p. 140. Springer-Verlag Berlin.Google Scholar
  22. 22.
    Mueller, P., Rudin, D. O. 1970. Translocators in bimolecular lipid membranes: Their role in dissipative and conservative bioenergy transductions.Curr. Top. Bioenergetics 3:157.Google Scholar
  23. 23.
    Noguchi, T., Freed, S. 1971. Dissociation of lipid components and reconstitution at −75°C. of Mg2+ dependent, Na+ and K+ stimulated adenosine triphosphate in rat brain.Nature 230: 148.Google Scholar
  24. 24.
    Post, R. L., Kume, S., Tobin, T., Orcutt, B., Sen, A. K. 1969. Flexibility of an active center in sodium-plus-potassium adenosine triphosphatase.J. Gen. Physiol. 54: 306s.Google Scholar
  25. 25.
    Post, R. L., Sen, A. K. 1967. Sodium and potassium-stimulated ATPase.In: Methods in Enzymology. S. P. Kolowick and N. O. Kaplan, editors. p. 762. Academic Press Inc., New York.Google Scholar
  26. 26.
    Redwood, W. R., Muldner, H., Thompson, T. E. 1969. Interaction of a bacterial adenosine triphosphatase with phospholipid bilayers.Proc. Nat. Acad. Sci. 64:989.Google Scholar
  27. 27.
    Ritchie, W. R. 1971. Electrogenic ion pumping in nervous tissue.Curr. Top. Bioenergetics 4:327.Google Scholar
  28. 28.
    Ross, J. H., Castow, M. E. 1968. A method for high-temperature exclusion chromatography of polyethylenes.J. Polymer Sci. 21c:143.Google Scholar
  29. 29.
    Rottem, S., Hubbell, W. L., Hayflick, L., McConnell, H. M. 1970. Motion of fatty acid spin labels in the plasma membrane of mycoplasma.Biochim. Biophys. Acta 219:105.Google Scholar
  30. 30.
    Schatz, G., Penefsky, H. S., Racker, E. 1967. Partial resolution of the enzymes catalyzing oxidative phosphorylation. XIV. Interaction of purified mitochondrial adenosine triphosphatase from baker's yeast with submitochondrial particles from beef heart.J. Biol. Chem. 242:2552.Google Scholar
  31. 31.
    Schwartz, A. 1962. A sodium and potassium-stimulated adenosine triphosphatase from cardiac tissues. I. Preparation and properties.Biochem. Biophys. Res. Commun. 9:301.Google Scholar
  32. 32.
    Schwartz, A., Bachelard, H. F., McIlwain, H. 1962. The sodium-stimulated adenosine triphosphatase activity and other properties of cerebral microsomal fractions and subfractions.Biochem. J. 84:626.Google Scholar
  33. 33.
    Sen, S. K., Post, R. L. 1964. Stoichiometry and localization of adenosine triphosphate-dependent sodium and potassium transport in the erythrocyte.J. Biol. Chem. 239:345.Google Scholar
  34. 34.
    Senft, J. P. 1967. Effects of some inhibitors on the temperature-dependent component of resting potential in lobster axon.J. Gen. Physiol. 50:1835.Google Scholar
  35. 35.
    Skou, J. C. 1965. Enzymatic basis for active transport of Na+ and K+ across cell membrane.Physiol. Rev. 45:596.Google Scholar
  36. 36.
    Skou, J. C. 1971. The role of the phosphorylated intermediate in the reaction of the (Na++K+)-activated enzyme system.Advanc. Exp. Med. Biol. 14:175.Google Scholar
  37. 37.
    Skou, J. C. 1971. Sequence of steps in the (Na+K)-activated enzyme system in relation to sodium and potassium transport.Curr. Top. Bioenergetics 4:357.Google Scholar
  38. 38.
    Tanaka, R., Sakamoto, T. 1969. Molecular structure in phospholipid essential to active (Na+−K+−Mg2+)-dependent ATPase and (K+−Mg2+)-dependent phosphatase of bovine cerebral cortex.Biochim. Biophys. Acta 193:384.Google Scholar
  39. 39.
    Tanaka, R., Sakamoto, T., Sakamoto, Y. 1971. Mechanism of lipid activation of Na, K, Mg-activated adenosine triphosphatase and K, Mg-activated phosphatase of bovine cerebral cortex.J. Membrane Biol. 4:42.Google Scholar
  40. 40.
    Thomas, R. C. 1969. Membrane current and intracellular sodium changes in a snail neurone during extrusion of injected sodium.J. Physiol. 201:495.Google Scholar
  41. 41.
    Tien, H. T., Diana, A. L. 1967. Some physical properties of bimolecular lipid membranes produced from new lipid solutions.Nature 215:1199.Google Scholar
  42. 42.
    Uesugi, S., Dulak, N. C., Dixon, J. F., Hexum, T. H., Dahl, J. L., Perdue, J. F., Hokin, L. E. 1971. Studies on the characterization of the sodium-potassium transport adenosine triphosphatase. VI. Large scale partial purification and properties of a lubrol-solubilized bovine brain enzyme.J. Biol. Chem. 246:531.Google Scholar
  43. 43.
    Whittam, R., Wheeler, K. P. 1970. Transport across cell membranes.Annu. Rev. Physiol. 32:21.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1972

Authors and Affiliations

  • M. K. Jain
    • 1
  • F. P. White
    • 1
  • A. Strickholm
    • 1
  • E. Williams
    • 1
  • E. H. Cordes
    • 1
  1. 1.Department of Chemistry and Anatomy and PhysiologyIndiana UniversityBloomington

Personalised recommendations