The Journal of Membrane Biology

, Volume 8, Issue 1, pp 313–332 | Cite as

Structured bienzymatical models formed by sequential enzymes bound into artificial supports: Active glucose transport effect

  • Georges Broun
  • Daniel Thomas
  • Eric Selegny


Two different artificial membrane systems bearing two built-in sequential enzymes are studied and compared in this communication.

The first is a nonstructured membrane bearing two mixed enzymes: β-galactosidase and glucose-oxidase. Its use enables a mathematical model to be formulated describing the heterogeneous phase kinetics of a bienzymatic system. The second is a multi-layer membrane system in which the structural dissymmetry involves a spatial orientation of the reacting metabolites, resulting in active glucose transport.

The latter system consists of two active leaflets, the first phosphorylating glucose (hexokinase+ATP), the second dephosphorylating glucose-6 phosphate (phosphatase). On either side of this system, a perm-selective proteic layer allows the passage of glucose but not of glucose-6 phosphate. When positioned between two compartments containing glucose, such a membrane accumulates glucose on its phosphatase side, while degrading ATP.

The accumulation of glucose as a function of the initial concentration shows the classical saturation of the transport system. Fructose competes with glucose transport.

The chemical balance of these two reactions has the appearance of hydrolysis of ATP. Vectorial catalysis is a result of the dissymmetry in distribution of active sites and can be explained by an oscillatory concentration profile of glucose inside the membrane.

The bienzymatic mechanism, a model of which is given here, is valid for any thickness of active layers and applicable to a system where both active sides are part of the same molecule as soon as it forms a uniformly oriented monolayer throughout the membrane structure.


Fructose Active Layer Hexokinase Membrane System Mixed Enzyme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Avrameas, S., Broun, G., Selegny, E., Thomas, D. 1968. Procédé de fabrication d'articles à base de substances protéiniques actives.Fr. Pat. C.N.R.S. no. 146 205.Google Scholar
  2. Crane, R. K., Krane, S. M. 1956. On the mechanism of the intestine absorption of sugars.Biochim. Biophys. Acta 20:568.Google Scholar
  3. Goldman, R., Kedem, O., Silman, H. I., Caplan, S. R., Katchalsky, E. 1968. Papaïncollodion membranes. I. Preparation and properties.Biochemistry 7:486.Google Scholar
  4. Goldman, R., Silman, H. I., Caplan, S. R., Kedem, O., Katchalsky, E. 1965. Papaïn membrane on a collodion matrix preparation and enzymic behavior.Science 150:758.Google Scholar
  5. Keilin, D., Hartree, E. F. 1952. Enzymic determination of glucose.Biochem. J. 50:341.Google Scholar
  6. Kropp, E. S., Wilson, J. E. 1970. Hexokinase binding sites on mitochondrial membranes.Biochem. Biophys. Res. Commun. 38:74.Google Scholar
  7. Lilly, M., Money, C., Hornby, W., Crook, E. M. 1965. Water insolubilized enzymes.Biochem. J. 95:45P.Google Scholar
  8. Mattiasson, B., Mosbach, K. 1971. Studies on a matrix-bound three-enzyme system.Biochim. Biophys. Acta 235:253.Google Scholar
  9. Morgan, H. E., Post, R. L., Park, C. R. 1960. Glucose transport and phosphorylation in the perfused heart of normal and diabetic rats.In: Membrane Transport and Metabolism. A. Kleinzellier and A. Kotyk, editors. p. 423. Academic Press Inc., New York.Google Scholar
  10. Nims, L. F. 1968. Membranes, material transfer and enzymes.Curr. Mod. Biol. 1:353.Google Scholar
  11. Nordlie, R. C., Soodsma, J. F. 1969. Effects of cetyltrimethylammonium bromide on catalytic properties of kidney microsomal glucose-6 phosphatase, inorganic pyrophosphate-glucose phosphotransferase and inorganic pyrophosphatase activities.Biochim. Biophys. Acta 191:636.Google Scholar
  12. Pasynski, A. G., Moisseyeva, L. N., Zvyagil'skaya, R. A. 1964. [in Russian]Biokhimiya 29:2.Google Scholar
  13. Post, R. L., Sen, A. K., Rosenthal, A. S. 1965. A phosphorylated intermediate in adenosine triphosphate-dependent sodium and potassium transport across kidney membranes.J. Biol. Chem. 240:1437.Google Scholar
  14. Selegny, E., Avrameas, S., Sroun, G., Thomas, D. 1968. Membrane à activé enzymatique.Compt. Rend. Acad Sci., Paris 266:1431D.Google Scholar
  15. Selegny, E., Broun, G., Thomas, D. 1969a. Méthode de détermination duK M réel d'un enzyme par le régime stationnaire d'une membrane à activité enzymatique.J. Chim. Phys. Physico-Chimie Biol. 66:391.Google Scholar
  16. Selegny, E., Broun, G., Thomas, D. 1969b. Enzyme en phase insoluble. Variation de l'activité enzymatique en fonction de la concentration en substrats.Compt. Rend. Acad. Sci., Paris 269:1330D.Google Scholar
  17. Sols, A. 1956. The hexokinase activity of the intestinal mucosa.Biochim. Biophys. Acta 19:144.Google Scholar
  18. Stein, W. D. 1967. The Movement of Molecules Across Cell Membranes. Academic Press Inc., New York.Google Scholar
  19. Thomas, D. 1971. Elaboration de modèles biologiques structurés à l'aide de membranes porteuses d'enzymes réticulées. Ph. D. Thesis, no. A O 5407. Rouen, France.Google Scholar
  20. Thomas, D., Broun, G., Selegny, E. 1972. Monoenzymatical model membranes.Biochimie 54:229.Google Scholar
  21. Van Steveninck, J. 1970. The transport mechanism of α-methyglucoside in yeast; Evidence for transport associated phosphorylation.Biochim. Biophys. Acta 203:376.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1972

Authors and Affiliations

  • Georges Broun
    • 1
    • 2
  • Daniel Thomas
    • 1
    • 2
  • Eric Selegny
    • 1
    • 2
  1. 1.Laboratoire de Biochimie MédicaleHopital Charles Nicolle76RouenFrance
  2. 2.Laboratoire de Chimie MacromoléculaireFaculté des Sciences de RouenMont Saint AignanFrance

Personalised recommendations