The Journal of Membrane Biology

, Volume 8, Issue 1, pp 27–44 | Cite as

Cation transport and electrogenesis byStreptococcus faecalis

I. The membrane potential
  • F. M. Harold
  • D. Papineau
Article

Summary

Uptake of the lipid-soluble cations dibenzyldimethylammonium (DDA+) and triphenylmethylphosphonium (TPMP+) byStreptococcus faecalis is biphasic. The initial phase is a rapid binding of the ions which does not require a source of metabolic energy and apparently consists of cation exchange at the cell surface. Upon addition of glucose further uptake of the cations occurs, by exchange for Na+ and H+. Evidence is presented suggesting that this metabolic uptake of DDA+ and TPMP+ is not due to active transport. It rather appears that uptake results from the generation of an electrical potential, interior negative, by the extrusion of H+ and, indirectly, of Na+. Accumulated DDA+ and TPMP+ are discharged by proton-conducting uncouplers. The cationconducting antibiotics valinomycin, monactin, nigericin and monensin do not inhibit uptake. Potassium and, under certain conditions, H+ displace DDA+ and TPMP+. Generation of an electrical difference across the membrane was verified by the accumulation of K+ in the presence of valinomycin. The concentration ratios achieved correspond to potentials of the order of −150 to −200 mV.

Keywords

Glucose Potassium Cell Surface Human Physiology Metabolic Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bakeeva, L. E., Grinius, L. L., Jasaitis, A. A., Kuliene, V. V., Levitsky, D. O., Liberman, E. A., Severina, I. I., Skulachev, V. P. 1970. Conversion of biomembrane-produced energy into electric form. II. Intact mitochondria.Biochim. Biophys. Acta 216:13.Google Scholar
  2. Cirillo, V. P. 1966. Membrane potentials and permeability.Bact. Rev. 30:68.Google Scholar
  3. Cope, F. W., Damadian, R. 1970. Cell potassium by K39 spin echo nuclear magnetic resonance.Nature 228:76.Google Scholar
  4. Deibel, R. L. 1964. The group DStreptococci.Bact. Rev. 28:330.Google Scholar
  5. Ginzburg, M., Sachs, L., Ginzburg, B. Z. 1971. Ion metabolism in aHalobacterium. II. Ion concentrations in cells at different levels of metabolism.J. Membrane Biol. 5:78.Google Scholar
  6. Grinius, L. L., Jasaitis, A. A., Kadziauskas, Yu. P., Liberman, E. A., Skulachev, V. P., Topali, V. P., Tsofina, L. M., Vladimirova, M. A. 1970. Conversion of biomembrane-produced energy into electric from: I. Submitochondrial particles.Biochim. Biophys. Acta 216:1.Google Scholar
  7. Harold, F. M. 1970. Antimicrobial agents and membrane function.Advanc. Microbial Physiol. 4:45.Google Scholar
  8. Harold, F. M., Baarda, J. R. 1967. Gramicidin, valinomycin and cation permeability ofStreptococcus faecalis.J. Bacteriol. 94:53.Google Scholar
  9. Harold, F. M., Baarda, J. R. 1968a. Effects of nigericin and monactin on cation permeability ofStreptococcus faecalis and metabolic capacities of potassium-depleted cells.J. Bacteriol. 95:816.Google Scholar
  10. Harold, F. M., Baarda, J. R. 1968b. Inhibition of membrane transport inStreptococcus faecalis by uncouplers of oxidative phosphorylation and its relationship to proton conduction.J. Bacteriol. 96:2025.Google Scholar
  11. Harold, F. M., Baarda, J. R., Baron, C., Abrams, A. 1969. Inhibition of membranebound adenosine triphosphatase and cation transport inStreptococcus faecalis by N,N′-dicyclohexylcarbodiimide.J. Biol. Chem. 244:2261.Google Scholar
  12. Harold, F. M., Baarda, J. R., Pavlasova, E. 1970a. Extrusion of sodium and hydrogen ions as the primary process in potassium ion accumulation byStreptococcus faecalis.J. Bacteriol. 101:152.Google Scholar
  13. Harold, F. M., Papineau, D. 1972. Cation transport and electrogenesis byStreptococcus faecalis. II. Proton and sodium movements.J. Membrane Biol. 8:45.Google Scholar
  14. Harold, F. M., Pavlasova, E., Baarda, J. R. 1970b. A transmembrane pH gradient inStreptococcus faecalis: origin, and dissipation by proton conductors and dicyclohexylcarbodiimide.Biochim. Biophys. Acta 196:235.Google Scholar
  15. Liberman, E. A., Skulachev, V. P. 1970. Conversion of biomembrane-produced energy into electric form. IV. General discussion.Biochim. Biophys. Acta 216:30.Google Scholar
  16. Liberman, E. A., Topaly, V. P. 1968. Selective transport of ions through bimolecular phospholipid membranes.Biochim. Biophys. Acta 163:125.Google Scholar
  17. Liberman, E. A., Toplay, V. P., Tsofina, L. M., Jasaitis, A. A., Skulachev, V. P. 1969. Mechanism of coupling of oxidative phosphorylation and the membrane potential of mitochondria.Nature 222:1076.Google Scholar
  18. Mitchell, P. 1966. Chemiosmotic coupling in oxidative and photosynthetic phosphorylation.Biol. Rev. 41:445.Google Scholar
  19. Mitchell, P. 1970. Membranes of cells and organelles: morphology, transport and metabolism.In: Organization and Control in Prokaryotic and Eukaryotic Cells. XXth Symposium of the Society for General Microbiology. H. P. Charles and B. C. J. G. Knight, editors. p. 121. Cambridge University Press.Google Scholar
  20. Mitchell, P., Moyle, J. 1969. Estimation of membrane potential and pH difference across the cristae membrane of rat liver mitochondria.Europ. J. Biochem. 7:471.Google Scholar
  21. Mueller, P., Rudin, D. O. 1970. Translocators in biomolecular lipid membranes: Their role in dissipative and conservative bioenergy transductions.Curr. Topics Bioenergetics 3:157.Google Scholar
  22. Pressman, B. C. 1968. Ionophorous antibiotics as models of biological transport.Fed. Proc. 27:1283.Google Scholar
  23. Schnebli, H. P., Vatter, A. E., Abrams, A. 1970. Membrane adenosine triphosphatase fromStreptococcus faecalis: Molecular weight, subunit structure and amino acid composition.J. Biol. Chem. 245:1122.Google Scholar
  24. Schultz, S. G., Wilson, N. L., Epstein, W. 1962. Cation transport inEscherichia coli. II. Intracellular chloride concentrations.J. Gen. Physiol. 46:159.Google Scholar
  25. Slayman, C. L. 1965. Electrical properties ofNeurospora crassa. Effects of external cations on the intracellular potential.J. Gen. Physiol. 49:69.Google Scholar
  26. Zarlengo, M., Abrams, A. 1963. Selective penetration of ammonia and alkylamines intoStreptococcus faecalis and their effect on glycolysis.Biochim. Biophys. Acta 71:65.Google Scholar
  27. Zarlengo, M. H., Schultz, S. G. 1966. Cation transport and metabolism inStreptococcus faecalis.Biochim. Biophys. Acta 126:308.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1972

Authors and Affiliations

  • F. M. Harold
    • 1
    • 2
  • D. Papineau
    • 1
    • 2
  1. 1.Division of ResearchNational Jewish Hospital & Research CenterDenver
  2. 2.Department of MicrobiologyUniversity of Colorado Medical CenterDenver

Personalised recommendations