Skip to main content
Log in

Kinetics of water penetration into unsonicated liposomes effects ofn-alkanols and cholesterol

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The rate of swelling of egg lecithin liposomes under osmotic shock has been studied employing a stopped-flow spectrophotometer. Incorporation of cholesterol and simple alcohols into the liposomal structure elicits a biphasic response in swelling rate: at low concentrations these additives increase but at high concentrations they decrease water permeabilty. For simplen-alkanols, the effects can be correlated with structure. Specifically, the concentration of alcohol required to elicit maximal permeability as well as the maximal permeability decreases with increasing length of the alcohol. These effects are accounted for on the basis of modification of the orientation and packing of lecithin molecules in the bilayer membrane of the liposome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bangham, A. D., DeGier, J., Greville, J. D. 1967. Osmotic properties and water permeability of phospholipid liquid crystals.Chem. Phys. Lipids 1:225

    Google Scholar 

  • Bangham, A. D., Standish, M. M., Watkins, J. C. 1965. Diffusion of univalent ions across the lamellae of swollen phospholipids.J. Mol. Biol. 13:238

    PubMed  Google Scholar 

  • Bittman, R., Blau, L. 1972. The phospholipid-cholesterol interaction. Kinetics of water permeability in liposomes.Biochemistry 11:4831

    PubMed  Google Scholar 

  • Blum, R. M., Forster, R. E. 1970. The water permeability of erythrocytes.Biochim. Biophys. Acta 203:410

    PubMed  Google Scholar 

  • Cass, A., Finkelstein, A. 1967. Water permeability of thin lipid membranes.J. Gen. Physiol. 50:1765

    Article  Google Scholar 

  • Cohen, B. E., Bangham, A. D., 1972. Diffusion of small non-electrolytes across liposome membranes.Nature 236:173

    PubMed  Google Scholar 

  • Demel, R. A., Kinsky, S. C., Kinsky, C. B., Van Deenen, L. L. M. 1968. Effects of temperature and cholesterol on the glucose permeability of liposomes prepared with neutral and synthetic lecithins.Biochim. Biophys. Acta 150:655

    PubMed  Google Scholar 

  • Forster, R. E. 1971. The transport of water in erythrocytes.Curr. Top. Membranes Transport 2:41

    Google Scholar 

  • Fourcans, B., Jain, M. K. 1973. Role of phospholipids in transport and enzymic reactions.Advanc. Lipid Res. 11. (In press)

  • Gutknecht, J., Tosteson, D. C. 1970. Ionic permeability of thin lipid membranes. Effects ofn-alkyl alcohols, polyvalent cations, and a secondary amine.J. Gen. Physiol. 55:359

    PubMed  Google Scholar 

  • Hammes, G. G., Schullery, S. E. 1970. Structure of macromolecular aggregates. 2. Construction of model membranes from phospholipids and polypeptides.Biochemistry 9:2555

    PubMed  Google Scholar 

  • Hansch, C., Dunn, W. J., III. 1972. Linear relationship between lipophilic character and biological activity of drugs.J. Pharm. Sci. 61:1

    PubMed  Google Scholar 

  • Jacobs, M. H., Willis, M. 1947. Preparation and properties of cation permeable erythrocytes.Biol. Bull., Woods Hole 93:223

    Google Scholar 

  • Jain, M. K. 1972. The Bimolecular Lipid Membrane: A System. Van Nostrand Reinhold Co., New York

    Google Scholar 

  • Jain, M. K., Cordes, E. H. 1973a. Phospholipases. I. Effect ofn-alkanols on the rate of enzymatic hydrolysis of egg phosphatidylcholine.J. Membrane Biol. 14 (In press)

  • Jain, M. K., Cordes, E. H. 1973b. Phospholipases. II. Enzymatic hydrolysis of lecithin: Effects of structure, cholesterol content, and sonication.J. Membrane Biol. 14 (In press)

  • Johnson, S. M., Bangham, A. D. 1969. The action of anesthetics on phospholipid membranes.Biochim. Biophys. Acta 193:92

    PubMed  Google Scholar 

  • Ladbrooke, B. D., Williams, R. M., Chapman, D. 1968. Studies on lecithin-cholesterolwater interactions by differential scanning calorimetry and X-ray diffraction.Biochim. Biophys. Acta 150:333

    PubMed  Google Scholar 

  • Netsky, M. G., Jacobs, M. H. 1939. Some factors affecting the rate of hemolysis of the mammalian erythrocyte byn-butyl alcohol.Biol. Bull., Woods Hole 77:319

    Google Scholar 

  • Papahadjopoulos, D., Watkins, J. C. 1967. Phospholipid model membranes. II. Permeability properties of hydrated liquid crystals.Biochim. Biophys. Acta 135:639

    PubMed  Google Scholar 

  • Paterson, S. J., Butler, K. W., Huang, P., Labelle, J., Smith, I. C. P., Schneider, H. 1972. The effect of alcohols on lipid bilayers: A spin label study.Biochim. Biophys. Acta 266:597

    PubMed  Google Scholar 

  • Ponder, E. 1947. K−Na exchange accompanying the prolytic loss of K from human red cells.J. Gen. Physiol. 32:53

    Google Scholar 

  • Rendi, R. 1967. Water extrusion in isolated subcellular fractions. VI. Osmotic properties of swollen phospholipid suspensions.Biochim. Biophys. Acta 135:333

    PubMed  Google Scholar 

  • Roth, S., Seeman, P. 1971. All lipid-soluble anaesthetics protect red cells.Nature, New Biol. 231:284

    Google Scholar 

  • Roth, S., Seeman, P. 1972. The membrane concentrations of neutral and positive anesthetics (alcohols, chlorpromazine, morphine) fit the Meyer-Overton rule of anesthesia; Negative narcotics do not.Biochim. Biophys. Acta 255:207

    PubMed  Google Scholar 

  • Seeman, P. 1972. The membrane actions of anesthetics and tranquilizers.Pharmacol. Rev. 24:583

    PubMed  Google Scholar 

  • Seeman, P., Roth, S., Schneider, H. 1971. The membrane concentrations of alcohol anesthetics.Biochim. Biophys. Acta 225:171

    PubMed  Google Scholar 

  • Seeman, P., Sha'afi, R. I., Galey, W. R., Solomon, A. K. 1970. The effect of anesthetics (chlorpromazine, ethanol) on erythrocyte permeability to water.Biochim. Biophys. Acta 211:365

    Google Scholar 

  • Sessa, G., Weissmann, G. 1968. Phospholipid spherules (liposomes) as a model for biological membranes.J. Lipid. Res. 9:310

    PubMed  Google Scholar 

  • Sha'afi, R. I., Rich, G. T., Mikulecky, D. C., Solomon, A. K. 1970. Determination of urea permeability in red cells by minimum method. A test of the phenomenological equations.J. Gen. Physiol. 55:427

    PubMed  Google Scholar 

  • Sha'afi, R. I., Rich, G. T., Sidel, V. W., Bossert, W., Solomon, A. K. 1967. The effect of the unstirred layer on human red cell water permeability.J. Gen. Physiol. 50:1377

    PubMed  Google Scholar 

  • Singleton, W. S., Gray, M. S., Brown, M. L., White, J. L. 1965. Chromatographically homogeneous lecithin from egg phospholipids.J. Amer. Oil Chem. Soc. 42:53

    Google Scholar 

  • Skou, J. C. 1958. Relation between the ability of various compounds to block nervous conduction and their penetration into a monomolecular layer of nerve-tissue lipoids.Biochim. Biophys. Acta 30:625

    PubMed  Google Scholar 

  • Van Deenen, L. L. M. 1971. Chemistry of phospholipids in relation to biological membranes.Rev. Pure Appl. Chem. 25:25

    Google Scholar 

  • Vanderkooi, J. M., Martonosi, A. 1971. Sarcoplasmic reticulum. XVI. The permeability of phosphatidylcholine vesicles for calcium.Arch. Biochem. Biophys. 147:632

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jain, M.K., Touissaint, D.G. & Cordes, E.H. Kinetics of water penetration into unsonicated liposomes effects ofn-alkanols and cholesterol. J. Membrain Biol. 14, 1–16 (1973). https://doi.org/10.1007/BF01868065

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868065

Keywords

Navigation