The Journal of Membrane Biology

, Volume 14, Issue 1, pp 1–16 | Cite as

Kinetics of water penetration into unsonicated liposomes effects ofn-alkanols and cholesterol

  • Mahendra K. Jain
  • David G. Touissaint
  • E. H. Cordes
Article

Summary

The rate of swelling of egg lecithin liposomes under osmotic shock has been studied employing a stopped-flow spectrophotometer. Incorporation of cholesterol and simple alcohols into the liposomal structure elicits a biphasic response in swelling rate: at low concentrations these additives increase but at high concentrations they decrease water permeabilty. For simplen-alkanols, the effects can be correlated with structure. Specifically, the concentration of alcohol required to elicit maximal permeability as well as the maximal permeability decreases with increasing length of the alcohol. These effects are accounted for on the basis of modification of the orientation and packing of lecithin molecules in the bilayer membrane of the liposome.

Keywords

Alcohol Cholesterol Human Physiology Lecithin Bilayer Membrane 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bangham, A. D., DeGier, J., Greville, J. D. 1967. Osmotic properties and water permeability of phospholipid liquid crystals.Chem. Phys. Lipids 1:225Google Scholar
  2. Bangham, A. D., Standish, M. M., Watkins, J. C. 1965. Diffusion of univalent ions across the lamellae of swollen phospholipids.J. Mol. Biol. 13:238PubMedGoogle Scholar
  3. Bittman, R., Blau, L. 1972. The phospholipid-cholesterol interaction. Kinetics of water permeability in liposomes.Biochemistry 11:4831PubMedGoogle Scholar
  4. Blum, R. M., Forster, R. E. 1970. The water permeability of erythrocytes.Biochim. Biophys. Acta 203:410PubMedGoogle Scholar
  5. Cass, A., Finkelstein, A. 1967. Water permeability of thin lipid membranes.J. Gen. Physiol. 50:1765CrossRefGoogle Scholar
  6. Cohen, B. E., Bangham, A. D., 1972. Diffusion of small non-electrolytes across liposome membranes.Nature 236:173PubMedGoogle Scholar
  7. Demel, R. A., Kinsky, S. C., Kinsky, C. B., Van Deenen, L. L. M. 1968. Effects of temperature and cholesterol on the glucose permeability of liposomes prepared with neutral and synthetic lecithins.Biochim. Biophys. Acta 150:655PubMedGoogle Scholar
  8. Forster, R. E. 1971. The transport of water in erythrocytes.Curr. Top. Membranes Transport 2:41Google Scholar
  9. Fourcans, B., Jain, M. K. 1973. Role of phospholipids in transport and enzymic reactions.Advanc. Lipid Res. 11. (In press)Google Scholar
  10. Gutknecht, J., Tosteson, D. C. 1970. Ionic permeability of thin lipid membranes. Effects ofn-alkyl alcohols, polyvalent cations, and a secondary amine.J. Gen. Physiol. 55:359PubMedGoogle Scholar
  11. Hammes, G. G., Schullery, S. E. 1970. Structure of macromolecular aggregates. 2. Construction of model membranes from phospholipids and polypeptides.Biochemistry 9:2555PubMedGoogle Scholar
  12. Hansch, C., Dunn, W. J., III. 1972. Linear relationship between lipophilic character and biological activity of drugs.J. Pharm. Sci. 61:1PubMedGoogle Scholar
  13. Jacobs, M. H., Willis, M. 1947. Preparation and properties of cation permeable erythrocytes.Biol. Bull., Woods Hole 93:223Google Scholar
  14. Jain, M. K. 1972. The Bimolecular Lipid Membrane: A System. Van Nostrand Reinhold Co., New YorkGoogle Scholar
  15. Jain, M. K., Cordes, E. H. 1973a. Phospholipases. I. Effect ofn-alkanols on the rate of enzymatic hydrolysis of egg phosphatidylcholine.J. Membrane Biol. 14 (In press)Google Scholar
  16. Jain, M. K., Cordes, E. H. 1973b. Phospholipases. II. Enzymatic hydrolysis of lecithin: Effects of structure, cholesterol content, and sonication.J. Membrane Biol. 14 (In press)Google Scholar
  17. Johnson, S. M., Bangham, A. D. 1969. The action of anesthetics on phospholipid membranes.Biochim. Biophys. Acta 193:92PubMedGoogle Scholar
  18. Ladbrooke, B. D., Williams, R. M., Chapman, D. 1968. Studies on lecithin-cholesterolwater interactions by differential scanning calorimetry and X-ray diffraction.Biochim. Biophys. Acta 150:333PubMedGoogle Scholar
  19. Netsky, M. G., Jacobs, M. H. 1939. Some factors affecting the rate of hemolysis of the mammalian erythrocyte byn-butyl alcohol.Biol. Bull., Woods Hole 77:319Google Scholar
  20. Papahadjopoulos, D., Watkins, J. C. 1967. Phospholipid model membranes. II. Permeability properties of hydrated liquid crystals.Biochim. Biophys. Acta 135:639PubMedGoogle Scholar
  21. Paterson, S. J., Butler, K. W., Huang, P., Labelle, J., Smith, I. C. P., Schneider, H. 1972. The effect of alcohols on lipid bilayers: A spin label study.Biochim. Biophys. Acta 266:597PubMedGoogle Scholar
  22. Ponder, E. 1947. K−Na exchange accompanying the prolytic loss of K from human red cells.J. Gen. Physiol. 32:53Google Scholar
  23. Rendi, R. 1967. Water extrusion in isolated subcellular fractions. VI. Osmotic properties of swollen phospholipid suspensions.Biochim. Biophys. Acta 135:333PubMedGoogle Scholar
  24. Roth, S., Seeman, P. 1971. All lipid-soluble anaesthetics protect red cells.Nature, New Biol. 231:284Google Scholar
  25. Roth, S., Seeman, P. 1972. The membrane concentrations of neutral and positive anesthetics (alcohols, chlorpromazine, morphine) fit the Meyer-Overton rule of anesthesia; Negative narcotics do not.Biochim. Biophys. Acta 255:207PubMedGoogle Scholar
  26. Seeman, P. 1972. The membrane actions of anesthetics and tranquilizers.Pharmacol. Rev. 24:583PubMedGoogle Scholar
  27. Seeman, P., Roth, S., Schneider, H. 1971. The membrane concentrations of alcohol anesthetics.Biochim. Biophys. Acta 225:171PubMedGoogle Scholar
  28. Seeman, P., Sha'afi, R. I., Galey, W. R., Solomon, A. K. 1970. The effect of anesthetics (chlorpromazine, ethanol) on erythrocyte permeability to water.Biochim. Biophys. Acta 211:365Google Scholar
  29. Sessa, G., Weissmann, G. 1968. Phospholipid spherules (liposomes) as a model for biological membranes.J. Lipid. Res. 9:310PubMedGoogle Scholar
  30. Sha'afi, R. I., Rich, G. T., Mikulecky, D. C., Solomon, A. K. 1970. Determination of urea permeability in red cells by minimum method. A test of the phenomenological equations.J. Gen. Physiol. 55:427PubMedGoogle Scholar
  31. Sha'afi, R. I., Rich, G. T., Sidel, V. W., Bossert, W., Solomon, A. K. 1967. The effect of the unstirred layer on human red cell water permeability.J. Gen. Physiol. 50:1377PubMedGoogle Scholar
  32. Singleton, W. S., Gray, M. S., Brown, M. L., White, J. L. 1965. Chromatographically homogeneous lecithin from egg phospholipids.J. Amer. Oil Chem. Soc. 42:53Google Scholar
  33. Skou, J. C. 1958. Relation between the ability of various compounds to block nervous conduction and their penetration into a monomolecular layer of nerve-tissue lipoids.Biochim. Biophys. Acta 30:625PubMedGoogle Scholar
  34. Van Deenen, L. L. M. 1971. Chemistry of phospholipids in relation to biological membranes.Rev. Pure Appl. Chem. 25:25Google Scholar
  35. Vanderkooi, J. M., Martonosi, A. 1971. Sarcoplasmic reticulum. XVI. The permeability of phosphatidylcholine vesicles for calcium.Arch. Biochem. Biophys. 147:632PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1973

Authors and Affiliations

  • Mahendra K. Jain
    • 1
  • David G. Touissaint
    • 1
  • E. H. Cordes
    • 1
  1. 1.Department of ChemistryIndiana UniversityBloomington

Personalised recommendations