Advertisement

The Journal of Membrane Biology

, Volume 9, Issue 1, pp 385–401 | Cite as

The effects of maleic anhydride on the ionic permeability of red cells

  • Ana L. Obaid
  • Alcides F. Rega
  • Patricio J. Garrahan
Article

Summary

Maleic anhydride (MA) has been shown to react specifically and rapidly with amino groups of proteins; the maleyl amino groups are negatively charged and completely stable at neutral pH. Treatment of human red cells with this reagent results in a significant increase in K+ permeability which is associated with a much smaller increase in Na+ permeability. Opposite effects are observed on anion permeability, the SO 4 −− and Cl permeability being decreased to an approximately similar extent upon treatment with MA.

Studies on the distribution of MA between membrane lipids and proteins shows that most of the membrane-bound MA is associated with membrane proteins. These results suggest that the observed effects of MA on the ion permeability of the red cell are caused by its combination with amino groups of cell membrane proteins.

Keywords

Lipid Cell Membrane Membrane Protein Anhydride Human Physiology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adair, G. S., Robinson, M. E. 1930. The analysis of the osmotic pressure of the serum proteins and the molecular weights of albumins and globulins.Biochem. J. 24:1864.Google Scholar
  2. Bohner, L. S., Soto, E. F., Cohan, T. 1965. Quantitative analysis of phospholipids by thin-layer chromatography.J. Chromatog. 17:513.Google Scholar
  3. Bray, G. A. 1960. A simple efficient liquid scintillator for counting aqueous solutions in a liquid scintillation counter.Analyt. Biochem. 1:279.Google Scholar
  4. Butler, P. D. J., Harris, J. I., Hartley, B. S., Leberman, R. 1969. The use of maleic anhydride for the reversible blocking of amino groups in polypeptide chains.Biochem. J. 122:679.Google Scholar
  5. Dalmark, M., Wieth, J. O. 1970. Chloride and sodium permeabilities of human red cells.Biochim. Biophys. Acta 112:679.Google Scholar
  6. Folin, O., Wu, H. 1919. A system for blood analysis.J. Biol. Chem. 38:81.Google Scholar
  7. Garrahan, P. J., Pouchan, M. I., Rega, A. F. 1969. Potassium activated phosphatase from human red blood cells. The mechanism of potassium activation.J. Physiol. 202:305.PubMedGoogle Scholar
  8. Garrahan, P. J., Rega, A. F. 1967. Cation loading of red blood cells.J. Physiol. 193:459.PubMedGoogle Scholar
  9. Hunter, M. J. 1971. A quantitative estimate of the non-exchange-restricted chloride permeability of the human red cell.J. Physiol. 218:49P.Google Scholar
  10. Katz, B. 1966. Nerve, Muscle and Synapse. McGraw-Hill Book Co., Inc., New York, p. 60.Google Scholar
  11. Knauf, P. A., Rothstein, A. 1971. Chemical modification of membranes. I. Effects of sulfhydryl and amino reactive reagents an anion and cation permeability of the human red blood cell.J. Gen. Physiol. 58:190.PubMedGoogle Scholar
  12. Lew, V. L. 1970. Effect of intracellular calcium on the potassium permeability of human red cells.J. Physiol. 206:35P.Google Scholar
  13. Passow, H. 1969. Passive ion permeability of the erythrocyte membrane. An assessment of the scope and limitations of the fixed charge hypothesis.Prog. Biophys. Mol. Biol. 19:425.Google Scholar
  14. Passow, H., Schnell, K. F. 1969. Chemical modifiers of passive ion permeability of the erythrocyte membrane.Experientia 25:460.PubMedGoogle Scholar
  15. Pfleger, K., Rummel, W., Seifen, E. 1967. Sodium and potassium permeability of red blood cells in dependence of the pH.Pflüg. Arch. Ges. Physiol. 295:255.Google Scholar
  16. Poensgen, J., Passow, H. 1971. Action of 1-fluoro-2,4-dinitrobenzene on passive ion permeability of the human red blood cell.J. Membrane Biol. 6:210.Google Scholar
  17. Reed, C. F., Swisher, S. N., Marinetti, G. V., Eden, E. G. 1960. Studies of the lipids of the erythrocyte. I. Quantitative analysis of the lipids of normal human red blood cells.J. Lab. Clin. Med. 56:281.PubMedGoogle Scholar
  18. Savitz, D., Sidel, V. W., Solomon, A. K. 1964. Osmotic properties of human red cells.J. Gen. Physiol. 48:79.PubMedGoogle Scholar
  19. Schales, O., Schales, S. 1941. A simple and accurate method for the determination of chloride in biological fluids.J. Biol. Chem. 140:879.Google Scholar
  20. Sutherland, R. M., Rothstein, A., Weed, R. I. 1967. Erythrocyte membrane sulfhydryl groups and cation permeability.J. Cell. Physiol. 69:185.PubMedGoogle Scholar
  21. Whittam, R. 1968. Control of membrane permeability to potassium in red blood cells.Nature 219:610.PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1972

Authors and Affiliations

  • Ana L. Obaid
    • 1
  • Alcides F. Rega
    • 1
  • Patricio J. Garrahan
    • 1
  1. 1.Departmento de Química BiológicaFacultad de Farmacia y BioquímicaBuenos AiresArgentina

Personalised recommendations