The Journal of Membrane Biology

, Volume 10, Issue 1, pp 171–192 | Cite as

Transport of ions of one kind through thin membranes

II. Nonequilibrium steady-state behavior
  • R. de Levie
  • N. G. Seidah
  • H. Moreira
Article

Summary

The equation for steady-state movement of ions of one kind through planar membranes has been solved. Numerical results are given, as well as profiles of potential, field and concentration. For small deviations from the equilibrium potential, an essentially constant intrinsic membrane conductance is obtained, which can be calculated from equilibrium properties. For larger deviations from equilibrium, the intrinsic membrane conductance is still essentially constant for symmetrical interfacial concentrations of the permeable ion, but varies significantly with potential for asymmetric interfacial concentrations, especially if these concentrations are small. In the latter case, one can often use the constant field approximation, for which explicit expressions are presented.

Keywords

Small Deviation Human Physiology Explicit Expression Field Approximation Equilibrium Potential 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cole, K. S. 1965. Electrodiffusion models for the membrane of squid giant axon.Physiol. Rev. 45:340.PubMedGoogle Scholar
  2. de Levie, R., Moreira, H. 1972. Transport of ions of one kind through thin membranes. I. General and equilibrium considerations.J. Membrane Biol. 9:241.Google Scholar
  3. Eisenman, G., Ciani, S. M., Szabo, G. 1968. Some theoretically expected and experimentally observed properties of lipid bilayer membranes containing neutral carriers of ions.Fed. Proc. 27:1289.PubMedGoogle Scholar
  4. LeBlanc, O. H. 1969. Tetraphenylborate conductance through lipid bilayer membranes.Biochim. Biophys. Acta 193:350.PubMedGoogle Scholar
  5. LeBlanc, O. H., Jr. 1971. The effect of uncouplers of oxidative phosphorylation on lipid bilayer membranes: Carbonylcyanidem-chlorophenylhydrazone.J. Membrane Biol. 4:227.Google Scholar
  6. McLaughlin, S. G. A., Szabo, G., Eisenman, G. 1971. Divalent ions and the surface potential of charged phospholipid membranes.J. Gen. Physiol. 58:667.PubMedGoogle Scholar
  7. McLaughlin, S. G. A., Szabo, G., Eisenman, G., Ciani, S. M. 1970. Surface charge and the conductance of phospholipid membranes.Proc. Nat. Acad. Sci. 67:1268.PubMedGoogle Scholar
  8. Mott, N. F. 1939. The theory of crystal rectifiers.Proc. Roy. Soc. (London) A171:27.Google Scholar
  9. Neumcke, B., Läuger, P. 1970. Space charge-limited conductance in lipid bilayer membranes.J. Membrane Biol. 3:54.Google Scholar
  10. Sinharay, N., Meltzer, B. 1964. Characteristics of insulator diodes determined by space charge and diffusion.Solid-State Electron.7:125.Google Scholar
  11. Skinner, S. M. 1955. Diffusion, static charges, and the conductance of electricity in nonmetallic solids by a single charge carrier. II. Solution of the rectifier equations for insulating layers.J. Appl. Physiol. 26:509.Google Scholar
  12. Teorell, T. 1953. Transport processes and electrical phenomena in ionic membranes.Prog. Biophys. Biophys. Chem. 3:305.Google Scholar
  13. Wright, G. T. 1961. Mechanisms of space-charge-limited current in solids.Solid-State Electron. 2:165.Google Scholar

Copyright information

© Springer-Verlag New York Inc 1972

Authors and Affiliations

  • R. de Levie
    • 1
  • N. G. Seidah
    • 1
  • H. Moreira
    • 1
  1. 1.Department of ChemistryGeorgetown UniversityWashington, D. C.

Personalised recommendations