Skip to main content
Log in

Fate and movement of microorganisms in the environment

  • Published:
Environmental Management Aims and scope Submit manuscript

Summary

This literature review indicates how little is known about the growth of introduced bacteria. The available data base is so sparse that one can only speculate on the environmental conditions and the physiological traits that are needed to permit bacterial growth. Although methods are available to label organisms so that their multiplication can be detected under natural conditions, those methods have not been used sufficiently often to provide a meaningful base of information to allow a definition of conditions that favor multiplication of particular species or the organisms that are likely to proliferate in particular environments. However, because methods exist to monitor microbial growth, and new and better methods can be developed easily, it should not be difficult—provided research funds are made available—to expand greatly the data base and provide adequate information to be used for predicting the behavior of genetically engineered organisms in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Alexander, M. 1985. Genetic engineering: ecological consequences—reducing the uncertainties.Issues in Science and Technology 1(3):57–68.

    Google Scholar 

  • [OTA] Office of Technology Assessment. 1981. Impacts of applied genetics: micro-organisms, plants, and animals. US Congress, Washington, DC (OTA-HR-132), 331 pp.

    Google Scholar 

  • Sharples, F. E. 1982. Spread of organisms with novel genotypes: thoughts from an ecological perspective. Oak Ridge National Laboratory, Environmental Sciences Division, publication no. 2040 (ORNL/TM-8473), 47 pp. Sharples, F. E. 1983a. Pages 157–206 in US Congressional House Committee on Science and Technology,Environmental implications of genetic engineering. 1983, June. Sharples, F. E. 1983b.Also, Recombinant DNA Technical Bulletin 6:43–56.

  • Zaugg, R. H., and J. R. Swarz. 1981. Assessment of future environmental trends and problems: industrial use of applied genetics and biotechnologies, Teknekron Research, Inc., McLean, Virginia, for US Environmental Protection Agency, Office of Research and Development, Office of Exploratory Research, under EPA contract no. 68-02-3192 (EPA-600/8-81/020), 160 pp.

Literature cited

  • Alexander, M. 1981. Why microbial predators and parasites do not eliminate their prey and hosts.Annual Review of Microbiology 35:113–133.

    PubMed  Google Scholar 

  • Alexander, M. 1985. Ecological constraints on nitrogen fixation in agricultural ecosystems.Advances in Microbial Ecology 8:163–183.

    Google Scholar 

  • Burke, V., and L. Baird. 1931. Fate of fresh water bacteria in the sea.Journal of Bacteriology 21:287–298.

    Google Scholar 

  • Carlucci, A. F., and D. Pramer. 1960a. An evaluation of factors affecting the survival ofEscherichia coli in sea water. II. Salinity, pH, and nutrients.Applied Microbiology 8:247–250.

    PubMed  Google Scholar 

  • Carlucci, A. F., and D. Pramer, 1960b. III. Antibiotics.Applied Microbiology 8:251–254.

    PubMed  Google Scholar 

  • Carlucci, A. F., and D. Pramer, 1960c. IV. Bacteriophage.Applied Microbiology 8:254–256.

    PubMed  Google Scholar 

  • Chandler, D. S., and J. A. Craven. 1980. Relationship of soil moisture to survival ofEscherichia coli andSalmonella typhimurium in soils.Australian Journal of Agricultural Research 31:547–555.

    Google Scholar 

  • Chen, M., and M. Alexander. 1973. Survival of soil bacteria during prolonged desiccation.Soil Biology and Biochemistry 5:213–221.

    Google Scholar 

  • Dawe, L. L., and W. R. Penrose, 1978. “Bactericidal” property of seawater: death or debilitation.Applied and Environmental Microbiology 35:829–833.

    PubMed  Google Scholar 

  • Edmonds, R. L. 1976. Survival of coliform bacteria in sewage sludge applied to a forest clearcut and potential movement into groundwater.Applied and Environmental Microbiology 32:537–546.

    PubMed  Google Scholar 

  • Granai III, E., and R. E. Sjogren. 1981. In situ and laboratory studies of bacterial survival using a microporous membrane sandwich.Applied and Environmental Microbiology 41:190–195.

    PubMed  Google Scholar 

  • Guy, E. M., and T. A. Visser. 1979. Adsorption and survival patterns ofEscherichia coli and Streptococcus bovis in six New Zealand soils.New Zealand Journal of Agricultural Research 22:341–348.

    Google Scholar 

  • Hagedorn, C., D. T. Hansen, and G. H. Simonson. 1978. Survival and movement of fecal indicator bacteria in soil under conditions of saturated flow.Journal of Environmental Quality 7:55–59.

    Google Scholar 

  • Hendricks, C. W., and S. M. Morrison. 1967. Multiplication and growth of selected enteric bacteria in clear mountain stream water.Water Research 1:567–576.

    Google Scholar 

  • Hirte, W. F. 1977. Viability and potential survival of allochthonous and autochthonous bacteria in soil after superinfection.Zentralblatt fuer Bakteriologie Abteilung II 132:434–451.

    Google Scholar 

  • Jordan, E. O. 1926. The changes in the bacterial content of stored normal and typhoid feces.Journal of Infectious Diseases 38:306–326.

    Google Scholar 

  • Ketchum, B. H., J. C. Ayers, and R. F. Vaccaro. 1952. Processes contributing to the decrease of coliform bacteria in a tidal estuary.Ecology 33:247–258.

    Google Scholar 

  • Kibbey, H. J., C. Hagedorn, and E. L. McCoy. 1978. Use of fecal streptococci as indicators of pollution in soil.Applied and Environmental Microbiology 35:711–717.

    PubMed  Google Scholar 

  • Klein, D. A., and L. E. Casida, Jr. 1967.Escherichia coli die-out from normal soil as related to nutrient availability and the indigenous microflora.Canadian Journal of Microbiology 13:1461–1470.

    PubMed  Google Scholar 

  • Ko, W. H., and F. K. Chow. 1977. Characteristics of bacteriostasis in natural soils.Journal of General Microbiology 102:295–298.

    Google Scholar 

  • Kriss, A. E., I. E. Mishustina, N. Mitskevich, and E. V. Zemtsova. 1967. Microbial population of oceans and seas. Edward Arnold, London.

    Google Scholar 

  • Liang, L. N., J. L. Sinclair, L. M. Mallory, and M. Alexander. 1982. Fate in model ecosystems of microbial species of potential use in genetic engineering.Applied and Environmental Microbiology 44:708–714.

    PubMed  Google Scholar 

  • Lowe, W. E., and T. R. G. Gray. 1973. Ecological studies on coccoid bacteria in a pine forest soil. II. Growth of bacteria introduced into soil.Soil Biology and Biochemistry 5:449–462.

    Google Scholar 

  • Mallmann, W. L., and W. Litsky. 1951. Survival of selected enteric organisms in various types of soil.American Journal of Public Health 41:38–44.

    PubMed  Google Scholar 

  • Mallory, L. M., C.-S. Yuk, L. N. Liang, and M. Alexander. 1983. Alternative prey: a mechanism for elimination of bacterial species by protozoa.Applied and Environmental Microbiology 46:1073–1079.

    PubMed  Google Scholar 

  • McCambridge, J., and T. A. McMeekin. 1980. Relative effects of bacterial and protozoan predators on survival ofEscherichia coli in estuarine water samples.Applied and Environmental Microbiology 40:907–911.

    PubMed  Google Scholar 

  • McFeters, G. A., G. K. Bissonette, J. J. Jazeski, C. A. Thompson, and D. G. Stuart. 1974. Comparative survival of indicator bacteria and enteric pathogens in well water.Applied Microbiology 27:823–829.

    PubMed  Google Scholar 

  • McFeters, G. A., and D. G. Stuart. 1972. Survival of coliform bacteria in natural waters: field and laboratory studies with membrane-filter chambers.Applied Microbiology 24:805–811.

    PubMed  Google Scholar 

  • Mitchell, R. 1968. Factors affecting the decline of nonmarine microorganisms in seawater.Water Research 2:535–543.

    Google Scholar 

  • Mitchell, R., and J. C. Morris. 1969. The fate of intestinal bacteria in the sea. Pages 811–817in Advances in water pollution research. Pergamon Press, Oxford.

    Google Scholar 

  • Nabbut, N. H., and F. Kurayiyya. 1972. Survival ofSalmonella typhi in seawater.Journal of Hygiene 70:223–228.

    PubMed  Google Scholar 

  • Nelson, G., and J. L. Neal, Jr. 1974. Persistence of a streptomycin resistant variant ofCorynebacterium insidiosum in soil and alfalfa roots in soil.Plant and Soil 40:581–588.

    Google Scholar 

  • Nusbaum, I., and R. M. Garver. 1955. Survival of coliform organisms in Pacific coastal waters.Sewage and Industrial Waste 27:1383–1390.

    Google Scholar 

  • Osa-Afiana, L. O., and M. Alexander. 1979. Effect of moisture on the survival ofRhizobium in soil.Soil Science Society of America Journal 43:925–930.

    Google Scholar 

  • Osa-Afiana, L. O., and M. Alexander. 1982. Differences among cowpea rhizobia in tolerance to high temperature and desiccation in soil.Applied and Environmental Microbiology 43:435–439.

    Google Scholar 

  • Ostrolenk, M., N. Kramer, and R. C. Cleverdon. 1947. Comparative studies of enterococci andEscherichia coli as indices of pollution.Journal of Bacteriology 53:197–203.

    Google Scholar 

  • Parhad, N. M., and N. U. Rao. 1974. Effect of pH on survival ofEscherichia coli.Journal of the Water Pollution Control Federation 46:980–986.

    Google Scholar 

  • Pena-Cabriales, J. J., and M. Alexander. 1979. Survival ofRhizobium in soils undergoing drying.Soil Science Society of America Journal 43:962–966.

    Google Scholar 

  • Pena-Cabriales, J. J., and M. Alexander. 1983a. Growth ofRhizobium in unamended soil.Soil Science Society of America Journal 47:81–84.

    Google Scholar 

  • Pena-Cabriales, J. J., and M. Alexander. 1983b. Growth ofRhizobium in soil amended with organic matter.Soil Science Society of America Journal 47:241–245.

    Google Scholar 

  • Porges, R., and K. M. Mackenthun. 1963. Waste stabilization ponds: use, function and biota.Biotechnology and Bioengineering 5:255–273.

    Google Scholar 

  • Roper, M. M., and K. C. Marshall. 1978. Biological control agents of sewage bacteria in marine habitats.Australian Journal of Marine and Freshwater Research 29:335–343.

    Google Scholar 

  • Rudolfs, W., L. L. Falk, and R. A. Rogotzkie. 1950. Literature review on the occurrence and survival of enteric, pathogenic, and related organisms in soil, water, sewage, and sludges, and on vegetation. I. Bacterial and viral diseases.Sewage and Industrial Wastes 22:1261–1281.

    Google Scholar 

  • Saz, A. K., S. Watson, S. R. Brown, and D. L. Lowery. 1963. Antimicrobial activity of marine waters. I. Macromolecular nature of antistaphylococcal factor.Limnology and Oceanography 8:63–67.

    Google Scholar 

  • Schaad, N. W., and W. C. White. 1974. Survival ofXanthomonas campestris in soil.Phytopathology 64:1518–1520.

    Google Scholar 

  • Sinclair, J. M., and M. Alexander. 1984. Role of resistance to starvation in bacterial survival in sewage and lake water.Applied and Environmental Microbiology 48:410–415.

    PubMed  Google Scholar 

  • Smith, H. W. 1971. Incidence of R +Escherichia coli in coastal bathing waters of Britain.Nature (London) 234:155–156.

    Google Scholar 

  • Tate, R. L., III. 1978. Cultural and environmental factors affecting the longevity ofEscherichia coli in histosols.Applied and Environmental Microbiology 35:925–929.

    PubMed  Google Scholar 

  • Temple, K. L., A. K. Camper, and G. A. McFeters. 1980. Survival of two enterobacteria in feces buried in soil under field conditions.Applied and Environmental Microbiology 40:794–797.

    PubMed  Google Scholar 

  • Vaccaro, R. F., M. P. Briggs, C. L. Carey, and B. H. Ketchum. 1950. Viability ofEscherichia coli in seawater.American Journal of Public Health 40:1257–1266.

    PubMed  Google Scholar 

  • Van Donsel, D. J., E. E. Geldreich, and N. A. Clarke. 1967. Seasonal variations of indicator bacteria in soil and their contribution to storm-water pollution.Applied Microbiology 15:1362–1370.

    Google Scholar 

  • Wang, W. L. L., S. G. Dunlop, and R. G. De Boer. 1956. The survival ofShigella in sewage. I. An effect of sewage and fecal suspensions onShigella flexneri.Applied Microbiology 4:34–38.

    PubMed  Google Scholar 

  • Williams, R. S., and W. A. Hoy. 1930. The viability ofB. tuberculosis (bovinus) on pasture land in stored faeces and in liquid manure.Journal of Hygiene 30:413–419.

    Google Scholar 

Literature cited

  • Adams, A. P., and J. C. Spendlove. 1970. Coliform aerosols emitted by sewage treatment plants.Science 169:1218–1220.

    PubMed  Google Scholar 

  • Ainsworth, G. C. 1957. The dispersal of fungi pathogenic for man and animals. Pages 1–5in C. Horton-Smith (ed.), Biological aspects of the transmission of disease. Oliver and Boyd, Edinburgh.

    Google Scholar 

  • Alexander, M. 1971. Microbial ecology. Wiley, New York, 511 pp.

    Google Scholar 

  • Alexander, M. 1986. Survival and growth of bacteria.Environmental Management 10:464–470 [this issue].

    Google Scholar 

  • Anderson, J. D., and C. S. Cox. 1967. Microbial survival. Pages 203–226in P. H. Gregory and J. L. Monteith (eds.), Airborne microbes. Symposium Society of General Microbiology 17. University Press, Cambridge.

    Google Scholar 

  • Anderson, G. W. 1965. The principles of epidemiology as applied to infectious diseases. Pages 886–912in R. J. Dubos and J. G. Hirsch (eds.), Bacterial and mycotic infectious of man, 4th edn. J. B. Lippincott, Philadelphia.

    Google Scholar 

  • Atkinson, K. M. 1972. Birds as transporters of algae.British Phycological Journal 7:319–321.

    Google Scholar 

  • Ayliffe, G. A. J. 1970. The spread ofPseudomonas infection. Page 91in I. H. Silver (ed.), Aerobiology. Academic Press, London.

    Google Scholar 

  • Bausman, H. T., S. A. Schaub, R. E. Bates, H. L. McKim, P. W. Shumacher, and B. E. Brockett. 1983. Microbial aerosols from a field-source wastewater irrigation system.Journal of Water Pollution Control Federation 55:65–75.

    Google Scholar 

  • Baylor, E. R., M. B. Baylor, D. C. Blanchard, L. D. Syzdek, and C. Appel. 1977. Virus transfer from surf to wind.Science 198:575–580.

    PubMed  Google Scholar 

  • Bell, W., and R. Mitchell. 1972. Chemotactic and growth responses of marine bacteria to algal extracellular products.Biological Bulletin 143:265–277.

    Google Scholar 

  • Benbough, J. E. 1967. Death mechanisms in airborneEscherichia coli.Journal of General Microbiology 47:325–333.

    PubMed  Google Scholar 

  • Beveridge, W. I. B. 1957. Properties of some infective agents in relation to their modes of transmission. Pages 129–133in C. Horton-Smith (ed.), Biological aspects of the transmission of disease. Oliver and Boyd, Edinburgh.

    Google Scholar 

  • Black, F. L. 1975. Infectious diseases in primitive societies.Science 187:515–518.

    PubMed  Google Scholar 

  • Bock, K. R. 1962. Dispersal of uredospores ofHemileia vastatrix under field conditions.Transactions of the British Mycological Society 45:63–74.

    Google Scholar 

  • Bovallius, A., B. Bucht, R. Roffey, and P. Anäs. 1978. Long-range air transmission of bacteria.Applied and Environmental Microbiology 35:1231–1232.

    PubMed  Google Scholar 

  • Bovallius, A., R. Roffey, and E. Henningson. 1980. Long-range transmission of bacteria.Annals of the New York Academy of Science 353:186–200.

    Google Scholar 

  • Bowden, J., P. H. Gregory, and C. G. Johnson. 1971. Possible wind transport of coffee leaf rust across the Atlantic Ocean.Nature 229:500–501.

    Google Scholar 

  • Brachman, P. S. 1980. Inhalation anthrax.Annals of the New York Academy of Science 353:83–93.

    Google Scholar 

  • Broadbent, L. 1960. Dispersal of inoculum by insects and other animals, including man. Pages 97–135in J. G. Horsfall and A. E. Dimond (eds.), Plant pathology, vol. 3. Academic Press, New York.

    Google Scholar 

  • Brock, T. D., D. W. Smith, and M. T. Madigan. 1984. Biology of microorganisms, 4th edn. Prentice Hall, Englewood Cliffs, New Jersey, 847 pp.

    Google Scholar 

  • Brockwell, J., W. G. Bryant, and R. R. Gault. 1972. Ecological studies of root-nodule bacteria introduced into field environments. 3. Persistence ofRhizobium trifoli in association with white clover at high elevations.Australian Journal of Experimental Agriculture and Animal Husbandry 12:407–413.

    Google Scholar 

  • Brown, K. W., H. W. Wolf, K. C. Donnelly, and J. F. Slowey. 1979. The movement of fecal coliforms and coliphages below septic lines.Journal of Environmental Quality 8:121–125.

    Google Scholar 

  • Brown, R. J. Jr., D. A. Larson, and H. C. Bold. 1964. Airborne algae: their abundance and heterogeneity.Science 143:583–585.

    Google Scholar 

  • Burleigh, J. R., R. E. McCoy, and J. R. Wallin. 1979. Modelling of aerobiological systems: plant pathology models. Pages 298–334in R. L. Edmonds (ed.), Aerobiology: the ecological systems approach. Dowden, Hutchinson and Ross, Stroudsburg, Pennsylvania.

    Google Scholar 

  • Cammack, R. H. 1959. Studies onPuccinia polysora Underw. II. A consideration of the method of introduction ofP. polysora into Africa.Transactions of the British Mycological Society 42:27–32.

    Google Scholar 

  • Chapin, C. V. 1910. Infection by air. Chapter 6in Sources and modes of infection. Wiley, New York.

    Google Scholar 

  • Chet, I., S. Fogel, and R. Mitchell. 1971. Chemical detection of microbial prey by bacterial predators.Journal of Bacteriology 106:863–867.

    PubMed  Google Scholar 

  • Chet, I., and R. Mitchell. 1971. Ecological aspects of microbial chemotactic behavior.Annual Review of Microbiology 30:221–239.

    Google Scholar 

  • Chet, I., Y. Zilberstein, and Y. Henis. 1973. Chemotaxis ofPseudomonas lachrymans to plant extracts and to water droplets collected from the leaf surfaces of resistant and susceptible plants.Physiological Plant Pathology 3:473–479.

    Google Scholar 

  • Chuang, T. Y., and W. H. Ko. 1979. Propagule size: its value in the prediction of inoculum density and infection potential in soil. Pages 35–38in B. Schippers and W. Gams (eds.), Soil-borne plant pathogens. Academic Press, London.

    Google Scholar 

  • Claflin, L. E., D. L. Stuteville, and D. V. Armbrust. 1973. Wind-blown soil in the epidemiology of bacterial leaf spot of alfalfa.Phytopathology 63:1417–1419.

    Google Scholar 

  • Cole, J. J. 1982. Interactions between bacteria and algae in aquatic ecosystems.Annual Review of Ecology and Systematics 13:291–314.

    Google Scholar 

  • Cox, C. S. 1966. The survival ofEischerichia coli atomized into air and nitrogen from distilled water and from solutions of protecting agents, as a function of relative humidity.Journal of General Microbiology 43:383–399.

    PubMed  Google Scholar 

  • Crosse, J. E. 1957. The dispersal of bacterial plant pathogens. Pages 7–12in C. Horton-Smith (ed.), Biological aspects of the transmission of disease. Oliver and Boyd, Edinburgh.

    Google Scholar 

  • Dark, F. A., and D. S. Callow. 1973. The effect of growth conditions on the survival of airborneE. coli. Pages 97–99in J. F. P. Hers and K. C. Winkler (eds.), Airborne transmission and airborne infection. Oosthoek, Utrecht.

    Google Scholar 

  • Davis, B. D., R. Dulbecco, H. N. Eisner, H. S. Ginsberg, and W. B. Wood, Jr. 1967. Microbiology. Harper and Row, New York, 1464 pp.

    Google Scholar 

  • Diesch, S. L. 1970. Disease transmission of water-borne organisms of animal origin. Pages 265–285in T. L. Willrich and C. E. Smith (eds.), Agricultural practices and water quality. Iowa State University Press, Ames, Iowa.

    Google Scholar 

  • Dimmick, R. L., and A. B. Akers. 1969. An introduction to experimental aerobiology. Wiley-Interscience, New York, 494 pp.

    Google Scholar 

  • Dimond, A. E., and J. G. Horsfall. 1960. Inoculum and the diseased population. Pages 1–22in J. G. Horsfall and A. E. Dimond (eds.), Plant pathology, vol. 3. Academic Press, New York.

    Google Scholar 

  • Doetsch, R. N., and G. J. Hageage. 1968. Motility in procaryotic organisms: problems, points of view, and perspectives.Biological Reviews 43:317–362.

    PubMed  Google Scholar 

  • Dogiel, V. A., J. I. Poljanski, and E. M. Chejsin. 1965. General protozoology, 2nd edn. Oxford University Press, London, 747 pp.

    Google Scholar 

  • Duguid, J. P. 1945. The numbers and sites of origin of the droplets expelled during expiratory activities.Edinburgh Medical Journal 52:385.

    Google Scholar 

  • Dworkin, M. 1979. Spores, cysts, and stalks. Pages 1–84in J. R. Sokatch and L. N. Ornston (eds.), The bacteria, vol. VII: mechanisms of adaptation. Academic Press, New York.

    Google Scholar 

  • Evans, M. R., and J. D. Owens. 1973. Soil bacteria in landdrainage water.Water Research 7:1295–1300.

    Google Scholar 

  • Fox, R. A. 1970. A comparison of methods of dispersal, survival, and parasitism in some fungi causing root diseases of tropical plantation crops. Pages 179–182in T. A. Toussoun, R. V. Bega, and P. E. Nelson (eds.), Root disease and soil-borne pathogens. University of California Press, Berkeley.

    Google Scholar 

  • Fred, E. B., I. L. Baldwin, and E. McCoy. 1932. Root nodule bacteria and leguminous plants. University of Wisconsin Press, Madison, 343 pp.

    Google Scholar 

  • Fulton, J. D. 1966a. Microorganisms of the upper atmosphere. III. Relationship betwen altitude and micropopulation.Applied Microbiology 14:237–240.

    PubMed  Google Scholar 

  • Fulton, J. D. 1966b. Microorganisms of the upper atmosphere. IV. Microorganisms of a land air mass as it traverses an ocean.Applied Microbiology 14:241–244.

    PubMed  Google Scholar 

  • Goldberg, L. J., and I. Ford. 1973. The function of chemical additives in enhancing microbial survival in aerosols. Pages 86–89in J. F. P. Hers and K. C. Winkler (eds.), Airborne transmission and airborne infection. Oosthoek, Utrecht.

    Google Scholar 

  • Gray, P. 1961. The encyclopedia of the biological sciences., Reinhold and Company, New York, 1119 pp.

    Google Scholar 

  • Gregg, M. B. 1980. The epidemiology of influenza in humans.Annals of the New York Academy of Science 353:45–53.

    Google Scholar 

  • Gregory, P. H. 1952. Fungus spores.Transactions of the British Mycological Society 35:1–18.

    Google Scholar 

  • Gregory, P. H. 1968. Interpreting plant disease dispersal gradients.Annual Review of Phytopathology 6:189–212.

    Google Scholar 

  • Gregory, P. H. 1973. The microbiology of the atmosphere, 2nd edn. Wiley, New York, 377 pp.

    Google Scholar 

  • Grogan, R. G., and R. N. Campbell. 1966. Fungi as vectors and hosts of viruses.Annual Review of Phytopathology 4:29–52.

    Google Scholar 

  • Hamilton, P. B., and G. Shelley. 1971.Chemotactic response to amino acids by Pseudomonas.Journal of Bacteriology 108:596–598.

    PubMed  Google Scholar 

  • Harrington, J. B. 1979. Principles of deposition of microbiological particles. Pages 111–137in R. L. Edmonds (ed.), Aerobiology: the ecological systems approach. Dowden, Hutchinson and Ross, Stroudsburg, Pennsylvania.

    Google Scholar 

  • Harris, K. F., and K. Maramorosch. 1977. Aphids as virus vectors. Academic Press, New York, 559 pp.

    Google Scholar 

  • Harris, K. F., and K. Maramorosch. 1980. Vectors of plant pathogens. Academic Press, New York, 467 pp.

    Google Scholar 

  • Hawker, L. E., and A. H. Linton. 1979. Microorganisms function, form and environment, 2nd edn. University Park Press, Baltimore, 391 pp.

    Google Scholar 

  • Hersh, S. M. 1968. Chemical and biological warfare: America's hidden arsenal. Bobbs-Merrill, Indianapolis, 354 pp.

    Google Scholar 

  • Hewitt, W. B., and R. G. Grogan. 1967. Unusual vectors of plant viruses.Annual Review of Microbiology 21:205–224.

    PubMed  Google Scholar 

  • Hickman, C. J., and H. H. Ho. 1966. Behavior of zoospores in plant-pathogenic phycomycetes.Annual Review of Phytopathology 4:195–220.

    Google Scholar 

  • Hirst, J. M., and G. W. Hurst. 1967. Long-distance spore transport. Pages 307–344in P. H. Gregory and J. L. Monteith (eds.), Airborne microbes. University Press, Cambridge.

    Google Scholar 

  • Holliday, P. 1969. Dispersal of conidia ofDothidella ulei fromHevea brasiliensis.Annals of Applied Biology 63:435–447.

    Google Scholar 

  • Holliday, P. 1971. Some tropical plant pathogenic fungi of limited distribution.Review of Plant Pathology 50:337–348.

    Google Scholar 

  • Ingold, C. T. 1965. Spore liberation. Clarendon Press, Oxford, 210 pp.

    Google Scholar 

  • Kondoh, H., C. B. Ball, and J. Adler. 1979. Identification of a methyl-accepting chemotaxis protein for the ribose and galactose chemoreceptors ofEscherichia coli.Proceedings of the National Academy of Sciences (USA) 76:260–264.

    Google Scholar 

  • Koshland, D. E., Jr. 1977. Sensory response in bacteria.Advances in Neurochemistry 2:277–341.

    Google Scholar 

  • Kudo, R. R. 1966. Protozoology, 4th edn. C. C. Thomas, Springfield, Illinois, 966 pp.

    Google Scholar 

  • Lamanna, C. 1952. Biological role of spores.Bacteriological Reviews 16:90–93.

    Google Scholar 

  • Lamanna, C., and M. F. Mallette. 1965. Basic bacteriology: its biological and chemical background, 3rd edn. Williams and Wilkins, Baltimore, 1001 pp.

    Google Scholar 

  • Langmuir, A. D. 1980. Changing concepts of airborne infection of acute contagious diseases: a reconsideration of classic epidemiologic theories.Annals of the New York Academy of Science 353:35–44.

    Google Scholar 

  • Levin, S. A., and D. Pimentel. 1981. Selection of intermediate rates of increase in parasite-host systems.American Naturalist 117:308–315.

    Google Scholar 

  • Lewin, R. 1984. Microbial adhesion is a sticky problem.Science 224:375–377.

    PubMed  Google Scholar 

  • Lighthart, B. 1979. Airborne microbial models. Pages 361–363in R. L. Edmonds (ed.), Aerobiology: the ecological systems approach. Dowden, Hutchinson and Ross, Stroudsburg, Pennsylvania.

    Google Scholar 

  • Lighthart, B. 1984. Microbial aerosols: Estimated contribution of combine harvesting to an airshed.Applied and Environmental Microbiology 47:430–432.

    Google Scholar 

  • Lighthart, B., and A. S. Frisch. 1976. Estimation of viable airborne microbes downwind from a point source.Applied and Environmental Microbiology 31:700–704.

    PubMed  Google Scholar 

  • Lighthart, B., J. C. Spendlove, and T. G. Akers. 1979. Sources and characteristics of airborne materials. Bacteria and viruses. Pages 11–22in R. L. Edmonds (ed.), Aerobiology: the ecological systems approach. Dowden, Hutchinson and Ross, Stroudsburg, Pennsylvania.

    Google Scholar 

  • Lindemann, J., H. A. Constantinidou, W. R. Barchet, and C. D. Upper. 1982. Plants as sources of airborne bacteria, including ice nucleation-active bacteria.Applied and Environmental Microbiology 44:1059–1063.

    Google Scholar 

  • Lucas, G. B. 1980. The war against blue mold.Science 210:147–153.

    Google Scholar 

  • MacNab, R. M., and D. E. Koshland, Jr. 1972. The gradient-sensing mechanism in bacterial chemotaxis.Proceedings of the National Academy of Sciences (USA) 69:2509–2512.

    Google Scholar 

  • Madsen, E. L. 1981. Dispersal ofRhizobium andPseudomonas in soil columns. MS thesis, Cornell University, 104 pp.

  • Madsen, E. L., and M. Alexander. 1982. Transport ofRhizobium andPseudomonas through soil.Soil Science Society of America Journal 46:557–560.

    Google Scholar 

  • Maguire B., Jr. 1963. The passive dispersal of small aquatic organisms and their colonization of isolated bodies of water.Ecological Monographs 33:161–185.

    Google Scholar 

  • Mallman, W. L., and W. N. Mack. 1961. Pages 35–43in Groundwater contamination. USPHS Technical Bulletin W61-5.

  • Maramorosch, K., and K. F. Harris. 1979. Leafhopper vectors and plant disease agents. Academic Press, New York, 654 pp.

    Google Scholar 

  • Maramorosch, K., and K. F. Harris. 1981. Plant diseases and vectors: ecology and epidemiology. Academic Press, New York, 368 pp.

    Google Scholar 

  • Maser, C., J. M. Trappe, and R. A. Nussbaum. 1978. Fungal—small mammal interrelationships with emphasis on Oregon coniferous forests.Ecology 59:799–809.

    Google Scholar 

  • McCoy, E. L., and C. Hagedorn. 1979. Quantitatively tracing bacterial transport in saturated soil systems.Water, Air, and Soil Pollution 11:467–479.

    Google Scholar 

  • McLean, D. M., J. R. Brown, and R. Laak. 1966. Virus dispersal by water.Journal of the American Water Works Association 58:920–928.

    Google Scholar 

  • Meredith, D. S. 1973. Significance of spore release and dispersal mechanisms in plant disease epidemiology.Annual Review of Phytopathology 11:313–342.

    Google Scholar 

  • Mesibov, R., and J. Adler. 1972. Chemotaxis toward amino acids inE. coli Journal of Bacteriology 112:315–326.

    PubMed  Google Scholar 

  • Miller, T. D., and M. N. Schroth. 1972. Monitoring the epiphytic population ofErwinia amylovora on pear with a selective medium.Phytopathology 62:1175–1182.

    Google Scholar 

  • Moore, W. F. 1971. Origin and spread of southern corn leaf blight in 1970.Plant Disease Reporter 54:1104–1108.

    Google Scholar 

  • Morrison, S. M., and M. J. Allen. 1972. Bacterial movement through fractured bedrock. NTIS PB-212, 713. Colorado Environmental Research Center, Fort Collins. Completion Report Series no. 32.

  • Mossel, D. A. A., and M. Ingram. 1955. The physiology of the microbial spoilage of foods.Journal of Applied Bacteriology 18:232–268.

    Google Scholar 

  • Orr, G. F., and W. C. Tibbets. 1972. Morphology and other physical characteristics of urediospores possibly related to aerodynamics and long range travel.Mycopathologia et Mycologia Applicata 48:143–159.

    PubMed  Google Scholar 

  • Parker, D. T., J. C. Spendlove, J. A. Bondirant, and J. H. Smith. 1977. Microbial aerosols from food-processing waste spray fields.Journal of the Water Pollution Control Federation 49:2359–2365.

    Google Scholar 

  • Pasquill, F. 1974.Atmospheric diffusion: the dispersion of windborne material from industrial and other sources, 2nd edn. Wiley, New York, 297 pp.

    Google Scholar 

  • Payne, A. M.-M. 1958. Some aspects of the epidemiology of the 1957 influenza pandemic.Proceedings of the Royal Society of Medicine 51:1009–1015.

    PubMed  Google Scholar 

  • Peterson, E. W., and B. Lighthart. 1977. Estimation of downwind viable airborne microbes from a wet cooling tower, including settling.Microbial Ecology 4:67–79.

    Google Scholar 

  • Pilgram, W. K., and F. D. Williams. 1976. Survival value of chemotaxis in mixed cultures.Canadian Journal of Microbiology 22:1771–1773.

    PubMed  Google Scholar 

  • Polunin, N., and C. D. Kelly. 1952. Arctic aerobiology: fungi and bacteria caught in the air during flights over the geographic North Pole.Nature 170:314–316.

    PubMed  Google Scholar 

  • Ponder, F., Jr. 1980. Rabbits and grasshoppers: vectors of endomycorrhizal fungi on new coal mine spoil. USDA Forest Service Research Note NC, no. 250, 2 pp.

  • Purcell, E. M. 1977. Life at low Reynold's number.American Journal of Physics 45:3–11.

    Google Scholar 

  • Quentin, G. H. 1979. General approaches to modelling aerobiology systems. Pages 279–284in R. L. Edmonds (ed.), Aerobiology: the ecological systems approach. Dowden, Hutchinson and Ross, Stroudsburg, Pennsylvania.

    Google Scholar 

  • Rahe, T. M., C. Hagedorn, E. L. McCoy, and G. F. Kling. 1978. Transport of antibiotic-resistantE. coli through western Oregon hillslope soils under conditions of saturated flow.Journal of Environmental Quality 7:487–494.

    Google Scholar 

  • Randall, A. D. 1970. Movement of bacteria from a river to a municipal well: a case history.Journal of the American Water Works Association 62:716–720.

    Google Scholar 

  • Rayner, R. W., and J. C. F. Hopkins. 1962. Blue mould of tobacco: a review of current information. Commonwealth Mycological Institute, New England Miscellaneous Publication 16, 16 pp.

  • Reneau, R. G., Jr. 1978. Influence of artificial drainage on penetration of coliform bacteria from septic tank effluents into wet tile drained soils.Journal of Environmental Quality 7:23–30.

    Google Scholar 

  • Reneau, R. B., Jr., and D. E. Peitry. 1975. Movement of coliform bacteria from septic tank effluent through selected coastal plain soils of Virginia.Journal of Environmental Quality 4:41–44.

    Google Scholar 

  • Roffey, R., A. Bovallius, P. Anäs, and E. Konberg. 1977. Semicontinuous registration of airborne bacteria at an inland and a coastal station in Sweden.Grana 16:171–177.

    Google Scholar 

  • Rowbury, R. J., J. P. Armitage, and C. King. 1983. Movement, taxes and cellular interactions in the response of microorganisms to the natural environment. Pages 299–350in J. H. Slater, R. Whittenbury, and J. W. T. Wimpenny (eds.), Microbes in their natural environments. Cambridge University Press, Cambridge.

    Google Scholar 

  • Schrödter, H. 1960. Dispersal by air and water: the flight and landing. Pages 169–227in J. G. Horsfall and A. E. Dimond (eds.), Plant pathology, vol. 3. Academic Press, New York.

    Google Scholar 

  • Schroth, M. N., S. V. Thomson, D. C. Hildebrand, and W. J. Moller. 1974. Epidemiology and control of fire blight.Annual Review of Phytopathology 12:389–412.

    Google Scholar 

  • Shooter, R. A. 1970. Spread ofPseudomonas aeruginosa (Pyocyanea) andEscherichia coli. Page 92in I. H. Silver (ed.), Aerobiology. Academic Press, London.

    Google Scholar 

  • Skalig, P., and R. G. Eagon. 1972. Effect of physiological age and state on survival of desiccatedPseudomonas aeruginosa.Applied Microbiology 24:763–767.

    PubMed  Google Scholar 

  • Smith, J. L., and R. N. Deutsch. 1969. Studies in negative chemotaxis and the survival value of motility inPseudomonas fluorescens.Journal of General Microbiology 55:379–391.

    PubMed  Google Scholar 

  • Sokatch, J. R. 1979. Roles of appendages and surface layers in adaptation of bacteria to their environment. Pages 229–290in J. R. Sokatch and L. N. Ornston (eds.), The bacteria, vol. VII: mechanisms of adaptation. Academic Press, New York.

    Google Scholar 

  • Sorber, C. A., H. T. Bausum, S. A. Schaub, and M. J. Small. 1976. A study of bacterial aerosols at a waste water irrigation site.Journal of the Water Pollution Control Federation 48:2367–2379.

    PubMed  Google Scholar 

  • Stakman, E. C., and J. G. Harrar. 1957. Principles of plant pathology. Ronald Press, New York, 581 pp.

    Google Scholar 

  • Stevenson, R. E., and A. Collier. 1962. Preliminary observations on the occurrence of airborne marine phytoplankton.Lloydia 25:89–93.

    Google Scholar 

  • Stewart, K. W., L. E. Milliger, and B. M. Solon. 1970. Dispersal of algae, protozoans and fungi by aquatic Hemiptera, Trichoptera, and other aquatic insects.Annals of the Entomological Society of America 63:139–144.

    Google Scholar 

  • Stewart, K. W., and H. E. Schlichting, Jr. 1966. Dispersal of algae and protozoa by selected aquatic insects.Journal of Ecology 54:551–562.

    Google Scholar 

  • Stover, R. H. 1967. Intercontinental spread of banana leaf spot (Mycosphaerella musicola Leacd).Tropical Agriculture (Trinidad) 39:327–338.

    Google Scholar 

  • Talbot, P. H. B. 1952. Dispersal of fungus spores by small animals inhabiting wood bark.Transactions of the British Mycological Society 35:123–128.

    Google Scholar 

  • Tatum, L. A. 1971. The southern corn leaf blight epidemic.Science 171:1113–1116.

    Google Scholar 

  • Thornton, M. L. 1970. Transport of soil-dwelling aquatic Phycomycetes by earthworms.Transactions of the British Mycological Society 55:391–397.

    Google Scholar 

  • Thornton, M. L. 1971. Potential for long-range dispersal of aquatic phycomycetes by internal transport in birds.Transactions of the British Mycological Society 57:49–59.

    Google Scholar 

  • Tinline R. 1970. Lee wave hypothesis for the initial pattern of spread during the 1967–68 foot and mouth epizootic.Nature 227:860–862.

    Google Scholar 

  • Tipper, D. J., and A. Wright. 1979. The structure and biosynthesis of bacterial cell walls. Pages 291–426in J. R. Sokatch and L. N. Ornston (eds.), The bacteria, vol. VII: mechanisms of adaptation. Academic Press, New York.

    Google Scholar 

  • Turner, G. J. 1967. Snail transmission of species ofPhytophthora.Transactions of the British Mycological Society 50:251–258.

    Google Scholar 

  • Van der Plank, J. E. 1967. Spread of plant pathogens in space and time. Pages 227–246in P. H. Gregory and J. L. Monteith (eds.), Airborne microbes. University Press, Cambridge.

    Google Scholar 

  • Van der Zwet, T. 1968. Recent spread and present disease distribution of fire blight in the world.Plant Disease Reporter 52:698–702.

    Google Scholar 

  • Venette, J. R., and B. W. Kennedy. 1976. Generation ofPseudomonas glycinea aerosols by simulated raindrops [abstr].Proceedings of the American Phytopathology Society 3:256.

    Google Scholar 

  • Venette, J. R., and B. W. Kennedy. 1975. Naturally produced aerosols ofPseudomonas glycinea.Phytopathology 65:737–738.

    Google Scholar 

  • Viraraghavan, T. 1978. Travel of microorganisms from a septic tile.Water, Air, and Soil Pollution 9:355–362.

    Google Scholar 

  • Vogt, J. E. 1961. Pages 87–91in Ground water contamination, USPHS Technical Report W61-5.

  • Wade, N. 1978a. Cattle virus escapes from a P4 lab.Science 202:290.

    PubMed  Google Scholar 

  • Wade, N. 1978b. Accident and hostile citizens beset animal disease laboratory.Science 202:723–724.

    Google Scholar 

  • Waggoner, P. E. 1968. Weather and the rise and fall of fungi. Pages 45–66in W. P. Lowry (ed.), Biometeorology. Oregon State University Press, Corvallis.

    Google Scholar 

  • Waggoner, P. E., and J. G. Horsfall. 1969. EPIDEM. Connecticut Agriculture Experiment Station, New Haven, Bulletin 698, 80 pp.

    Google Scholar 

  • Wallace, H. R. 1979. Dispersal in time and space: soil pathogens. Pages 181–202in J. G. Horsfall and E. B. Cowling (eds.), Plant disease: an advanced treatise, vol. II: how disease develops in populations. Academic Press, New York.

    Google Scholar 

  • Warner, G. M., and D. W. French. 1970. Dissemination of fungi by migratory birds.Canadian Journal of Botany 48:907–910.

    Google Scholar 

  • Webb, S. J. 1960. Factors affecting the viability of airborne bacteria. I. Bacteria aerosolized from distilled water.Canadian Journal of Microbiology 5:649–669.

    Google Scholar 

  • Webb, S. J. 1967. The influence of oxygen and inositol on the survival of semidried microorganisms.Canadian Journal of Microbiology 13:733–742.

    PubMed  Google Scholar 

  • Weber, M. E., D. C. Blanchard, and C. D. Syzdek. 1983. The mechanism of scavenging of waterborne bacteria by a rising bubble.Limnology and Oceanography 28:101–105.

    Google Scholar 

  • Wehrle, P. F., J. Posch, K. H. Richter, and D. A. Henderson. 1970. An airborne outbreak of smallpox in a German hospital and its significance with respect to other recent outbreaks in Europe.Bulletin of the World Health Organization 43:669–679.

    PubMed  Google Scholar 

  • Weltzien, H. C. 1972. Geophytopathology.Annual Review of Phytopathology 10:277–298.

    Google Scholar 

  • Wolman, A., and A. E. Gorman. 1931. The significance of waterborne typhoid fever outbreaks 1920–1930. Williams and Wilkins, Baltimore, 91 pp.

    Google Scholar 

  • Zadoks, J. C. 1967. International dispersal of fungi.Netherlands Journal of Plant Pathology [Suppl. 1] 73:61–80.

    Google Scholar 

  • Zobell, C. E. 1942. Microorganisms in marine air. Pages 55–68in S. Moulton (ed.), Aerobiology. American Association for the Advancement of Science Publication no. 17.

  • Zobell, C. E., and H. M. Matthews. 1936. A qualitative study of the bacterial flora of sea and land breezes.Proceedings of the National Academy of Sciences (USA) 22:567–572.

    Google Scholar 

Literature cited

  • Brock, T. D., D. W. Smith, and M. T. Madigan. 1984. Biology of microorganisms, 4th edn. Prentice-Hall, Englewood Cliffs, New Jersey, 847 pp.

    Google Scholar 

  • Freifelder, D. 1983. Molecular biology: a comprehensive introduction to prokaryotes and eukaryotes. Jones and Bartlett, Boston, 979 pp.

    Google Scholar 

  • Hayes, W. F. 1968. The genetics of bacteria and their viruses: studies in basic genetics and molecular biology, 2nd edn. John Wiley and Sons, New York (copyright Blackwell Scientific Publications), 925 pp.

    Google Scholar 

  • Kahn, M. E., F. Barany, and H. O. Smith. 1983. Transformasomes: specialized membranous structures that protect DNA duringHaemophilus transformation.Proceedings of the National Academy of Sciences of the USA 80:6927–6931.

    PubMed  Google Scholar 

  • [NRC] National Research Council. 1984. Genetic engineering of plants: agricultural research opportunities and policy concerns. National Academy Press, Washington, DC, 83 pp.

    Google Scholar 

  • [OTA] Office of Technology Assessment. 1981. Impacts of applied genetics: micro-organisms, plants, and animals. US Congress, Washington, DC (OTA-HR-132), 331 pp.

    Google Scholar 

  • Sharples, F. E. 1982. Spread of organisms with novel genotypes: thoughts from an ecological perspective. Oak Ridge National Laboratory, Environmental Sciences Division, Publication no. 2040 (ORNL/TM-8473), 47 pp. Also, pages 157–206 in U.S. Congress, House Committee on Science and Technology, Environmental implications of genetic engineering. June 1983. Also,Recombinant DNA Technical Bulletin 6:43–56.

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alexander, M., Andow, D.A. & Gillett, J.W. Fate and movement of microorganisms in the environment. Environmental Management 10, 463–493 (1986). https://doi.org/10.1007/BF01867456

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01867456

Keywords

Navigation