Skip to main content
Log in

Applications

  • Published:
Environmental Management Aims and scope Submit manuscript

Summary

Economic incentives have spurred numerous applications of genetically engineered organisms in manufacture of pharmaceuticals and industrial chemicals. These successes, involving a variety of methods of genetic manipulation, have dispelled early fears that genetic engineering could not be handled safely, even in the laboratory. Consequently, the potential for applications in the wider environment without physical containment is being considered for agriculture, mining, pollution control, and pest control. These proposed applications range from modest extensions of current plant breeding techniques for new disease-resistant species to radical combinations of organisms (for example, nitrogen-fixing corn plants). These applications raise concerns about potential ecological impacts (see chapter 5), largely because of adverse experiences with both deliberate and inadvertent introductions of nonindigenous species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Bloom, B. R. 1980. Interferons and the immune system.Nature 284:593–595.

    PubMed  Google Scholar 

  • Brill, W. J. 1980. Biochemical genetics of nitrogen fixation.Microbiological Reviews 44:449–467.

    PubMed  Google Scholar 

  • Chakrabarty, A. M. 1981. Microorganisms having multiple compatible degradative energy-generating plasmids and preparation thereof. US patent 4,259,444; 31 March 1981 (Cl. 435-172.000) (filed 6 June 1972). Patent assigned to General Electric Company, Schenectady, New York.

  • Chibata, I. 1979. Immobilized microbial cells with polyacrylamide gel and carrageenan and their industrial applications.American Chemical Society Symposium Series 106:187–202.

    Google Scholar 

  • Crosson, P., and S. Brubaker. 1983. Resources and environmental impacts of trends in US agriculture. Project summary. US Environmental Protection Agency, Office of Research and Development, Washington, DC (EPA-600/S3-82-031), 6 pp.

    Google Scholar 

  • Da Silva, E. J. 1980. Biogas: fuel of the future?Ambio 9:2.

    Google Scholar 

  • Epstein, E., J. D. Noryln, D. W. Rush, R. W. Kingsbury, D. B. Kelley, G. A. Cunningham, and A. F. Wrona. 1980. Saline culture of crops: genetic approach.Science 210:399–404.

    Google Scholar 

  • Evans, R., G. Dominguez, R. Graham, S. Rider, P. Le Flamme, and M. Fey. 1983. Report on biotechnology. Springborn Laboratories, EPA contract 68-01-6601, 174 pp.

  • Flowers, T. J., P. F. Troke, and A. R. Yeo. 1977. The mechanism of salt tolerance in halophytes.Annual Review of Plant Physiology 28:89–121.

    Google Scholar 

  • Giles, K. L., and H. C. M. Whitehead. 1977. Reassociation of a modified mycorrhiza with the host plant roots (Pinus radiata) and the transfer of acetylene reduction activity.Plant and Soil 48:145–152.

    Google Scholar 

  • Giles, K. L., and I. K. Vasil. 1980. Nitrogen fixation and plant tissue culture.International Review of Cytology [Suppl 118].

  • Holló, J., J. Tóth, R. P. Tengerdy, and J. E. Johnson. 1979. Denitrification and removal of heavy metals from waste water by immobilized microorganisms.American Chemical Society Symposium Series 106:73–86.

    Google Scholar 

  • Kennedy, J. F. 1979. Facile methods for the immobilization of microbial cells without disruption of their life processes.American Chemical Society Symposium Series 106:119–131.

    Google Scholar 

  • Kidd, G. H., M. E. Davis, and P. Esmailzadeh. 1981. Agricultural applications of biotechnology: a review. Battelle Columbus Laboratories. EPA contract 68-02-3640. National Technical Information Service (PB82-114752), 97 pp.

  • Lim, S. T., K. Andersen, R. Tait, and R. C. Valentine. 1980. Genetic engineering in agriculture: hydrogen uptake (hup) genes.Trends in Biochemical Science 5:167–170.

    Google Scholar 

  • Marx, J. L. 1980. Interferon congress highlights.Science 210:998.

    PubMed  Google Scholar 

  • McDaniel, R. G. 1981. Recombinant DNA for plant genetic improvement. Pages 245–259in A. G. Walton (ed.), Recombinant DNA: proceedings of the third Cleveland symposium on macromolecules. Elsevier, Amsterdam.

    Google Scholar 

  • Murray, J. R. 1983. Patterns of investment in biotechnology.Bio/Technology 1:248–250.

    Google Scholar 

  • [NRC] National Research Council. 1984. Pages 40–53in Genetic engineering of plants: agricultural research opportunities and policy concerns. National Academy Press, Washington, DC.

    Google Scholar 

  • [OTA] Office of Technology Assessment. 1981. Impacts of applied genetics: micro-organisms, plants, and animals. US Congress, Washington, DC (OTA-HR-132), 331 pp.

    Google Scholar 

  • [OTA] Office of Technology Assessment. 1984. Commercial biotechnology: an international analysis. US Congress, Washington, DC (OTA-BA-218), 160 pp.

    Google Scholar 

  • Postgate, J. R. 1977. Consequences of the transfer of nitrogen fixation genes to new hosts.Ambio 6:178–180.

    Google Scholar 

  • Powledge, T. M. 1983. Surveillance of genetic engineering: will restraints continue to loosen?Bio/Technology 1:322–328.

    Google Scholar 

  • Raymond, R. L. 1984. Pages 133–138in Proceedings of the workshop: bioregulation kinetics, Navarre Beach, Florida, 18–20 October 1983. EPA-600/X-84-161.

  • Ross, M. J. 1980. Production of medically important polypeptides using recombinant DNA technology.Recombinant DNA Technical Bulletin 3:1–11.

    Google Scholar 

  • Schell, J., M. Van Montagu, M. De Beuckeleer, M. De Block, A. Depicker, M. De Wilde, G. Engler, C. Genetello, J. P. Hernalsteens, M. Holsters, J. Seurinck, B. Silva, F. van Vliet, and R. Villarroel. 1979. Interactions and DNA transfer betweenAgrobacterium tumefaciens, the Ti-plasmid and the plant host.Proceedings of the Royal Society of London [B] 204:251–266.

    Google Scholar 

  • Schubert, K. R., and H. J. Evans. 1977. The relation of hydrogen reactions to nitrogen fixation in nodulated symbionts. Pages 469–485in W. Newton, J. R. Postgate, and C. Rodrigues-Barrueco (eds.), Recent developments in nitrogen fixation. Academic Press, New York.

    Google Scholar 

  • Sharples, F. E. 1982. Spread of organisms with novel genotypes: thoughts from an ecological perspective. Oak Ridge National Laboratory, Environmental Sciences Division, publication no. 2040 (ORNL/TM-8473), 47 pp.

  • Shepherd, R. J., G. E. Bruening, and R. J. Wakeman. 1970. Double-stranded DNA from cauliflower mosaic virus,Virology 41:339–347.

    PubMed  Google Scholar 

  • Sun, M. 1980. Insulin wars: new advances may throw market into turbulence.Science 210:1225–1228.

    PubMed  Google Scholar 

  • Vieth, W. R., and K. Venkatsubramanian. 1979. Immobilized microbial cells in complex biocatalysis.American Chemical Society Symposium Series 106:1–11.

    Google Scholar 

  • Woodruff, H. B. 1980. Natural products from microorganisms.Science 208:1225–1229.

    PubMed  Google Scholar 

  • Zaugg, R. H., and J. R. Swarz. 1981. Assessment of future environmental trends and problems: industrial use of applied genetics and biotechnologies. Teknekron Research, McLean, Virginia, for Office of Research and Development, US Environmental Protection Agency, Washington, DC (EPA-600/8/81-020), 160 pp.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stern, A.M. Applications. Environmental Management 10, 445–452 (1986). https://doi.org/10.1007/BF01867454

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01867454

Keywords

Navigation