Skip to main content
Log in

Ecological effects of coastal marsh impoundments: A review

  • Profile
  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

Many coastal resource managers believe estuarine marshes are critically important to estuarine fish and shellfish, not only because of the habitat present for juvenile stages, but also because of the export of detritus and plant nutrients that are consumed in the estuary. Concern has been widely expressed that diking and flooding marshes (impounding) for mosquito control and waterfowl management interferes with these values of marshes. Major changes caused by impoundment include an increase in water level, a decrease in salinity, and a decrease in the exchange of marsh water with estuarine water. Alteration of species composition is dramatic after impoundment. Changes in overall production and transport phenomena, however—and the consequences of these changes— may not be as great in some cases as the concern about these has implied. Although few data are available, a more important concern may be the reduction of access by estuarine fish and shellfish to the abundant foods and cover available in many natural, as well as impounded, marshes. Perhaps even more important is the occasional removal of free access to open water when conditions become unfavorable in impounded marsh that is periodically opened and closed. Collection of comparative data on the estuarine animal use of various configurations of natural and impounded marshes by estuarine animals should lead to improved management of both impounded and unimpounded marshes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Anderson, T. K., M. H. Jensen, and J. Sorensen. 1984. Diurnal variation of nitrogen cycling in coastal, marine sediments: I. Denitrification.Marine Biology 83:171–176.

    Google Scholar 

  • Anderson III, W. D. 1976. A comparative study of a salt water impoundment with its adjacent tidal creek pertinent to culture ofCrassostrea virginica (Gmelin). MS thesis, Old Dominion University, Norfolk, Virginia, 65 pp.

    Google Scholar 

  • Beeftink, W. G. 1979. The structure of salt marsh communities in relation to environmental disturbances. Pages 77–93in R. L. Jefferies and A. J. Davy (eds.), Ecological processes in coastal environments. Blackwell, London.

    Google Scholar 

  • Bidlingmayer, W. L. 1982. Surveying salt marsh mosquito control impoundments in central Florida.Journal of the Florida Anti-Mosquito Association 53:4–7.

    Google Scholar 

  • Bidlingmayer, W. L., and E. D. McCoy. 1978. An inventory of the saltmarsh mosquito control impoundments in Florida. Florida Medical Entomology Laboratory, Vero Beach, Florida.

    Google Scholar 

  • Bishop, S. S., K. A. Emmanuele, and J. A. Yoder. 1984. Nutrient limitation of phytoplankton growth in Georgia nearshore waters.Estuaries 7:506–512.

    Google Scholar 

  • Blum, J. L. 1969. Nutrient changes in water flooding the high salt marsh.Hydrobiologia 34:95–99.

    Google Scholar 

  • Boesch, D. F., and R. E. Turner. 1984. Dependence of fishery species on salt marshes: the role of food and refuge.Estuaries 7:460–468.

    Google Scholar 

  • Boon, J. D., III. 1975. Tidal discharge asymmetry in a salt marsh drainage system.Limnology and Oceanography 20:71–80.

    Google Scholar 

  • Borey, R. B., P. A. Harcombe, and F. M. Fisher. 1983. Water and organic carbon fluxes from an irregularly flooded brackish marsh on the upper Texas coast, U.S.A.Estuarine, Coastal, and Shelf Science 16:379–402.

    Google Scholar 

  • Bratbak, G., and T. F. Thingstad. 1985. Phytoplankton-bacteria interactions: an apparent paradox? Analysis of a model system with both competition and commensalism.Marine Ecology-Progress Series 25:23–30.

    Google Scholar 

  • Broadfoot, W. M. 1967. Shallow-water impoundment increases soil moisture and growth of hardwoods.Soil Science Society of America Proceedings 31:562–564.

    Google Scholar 

  • Byron, M. M. 1968. Net nutrient exchange between high marsh areas and an estuary. MS Thesis, North Carolina State University, Raleigh, North Carolina, 22 pp.

    Google Scholar 

  • Cammen, L. M. 1980. The significance of microbial carbon in the nutrition of the deposit feeding polychaeteNereis succinea. Marine Biology 61:9–20.

    Google Scholar 

  • Christian, R. R., and R. L. Wetzel. 1978. Interaction between substrate, microbes, and consumers ofSpartina detritus in estuaries. Pages 93–113in M. L. Wiley (ed.), Estuarine interactions. Academic Press, New York.

    Google Scholar 

  • Christie, R. W. 1978. Spawning distribution of blueback herring,Alosa aestivalis, in abandoned rice fields and tributaries of the west branch of the Cooper River. MS thesis, Clemson University, Clemson, South Carolina, 57 pp.

    Google Scholar 

  • Clements, B. W., Jr., and A. J. Rogers. 1964. Studies of impounding for the control of salt marsh mosquitos in Florida, 1958–1963.Mosquito News 24:265–276.

    Google Scholar 

  • Correll, D. L. 1978. Estuarine productivity.BioScience 28:646–650.

    Google Scholar 

  • Cruz, A. A. de la. 1973. The role of tidal marshes in the productivity of coastal waters.Association of Southeastern Biologists Bulletin 20:147–156.

    Google Scholar 

  • Daiber, F. C. 1974. Salt marsh plants and future coastal salt marshes in relation to animals. Pages 475–508in R. J. Reimold and W. H. Queen (eds.), Ecology of halophytes. Academic Press, New York.

    Google Scholar 

  • Daiber, F. C. 1982. Animals of the tidal marsh. Van Nostrand Reinhold, New York, 422 pp.

    Google Scholar 

  • Daly, M. A., and A.C. Mathieson. 1981. Nutrient fluxes within a small north temperate salt marsh.Marine Biology 61:337–344.

    Google Scholar 

  • Dame, R. F., and D. Stilwell. 1984. Environmental factors influencing macrodetritus flux in North Inlet Estuary.Estuarine, Coastal, and Shelf Science 18:721–726.

    Google Scholar 

  • Dankers, N., M. Binsbergen, K. Zegers, R. Laane, and M. Rutgers van der Loeff. 1984. Transportation of water, particulate and dissolved organic and inorganic matter between a salt marsh and the Ems-Dollard estuary. The Netherlands.Estuarine, Coastal and Shelf Sciences 19:143–165.

    Google Scholar 

  • Darnell, R. 1958. Food habits of fishes and larger invertebrates of Lake Pontchartrain, Louisiana, an estuarine community.Publications of the Institute of Marine Science, University of Texas 5:353–416.

    Google Scholar 

  • Darnell, R. 1961. Trophic spectrum of an estuarine community, based on studies of Lake Pontchartrain, Louisiana.Ecology 42:553–568.

    Google Scholar 

  • Delwiche, C. C. 1970. The nitrogen cycle. Pages 71–80in The biosphere: a collection of reprints fromScientific American. W. H. Freeman, San Francisco.

    Google Scholar 

  • Doumlele, D. G. 1981. Primary production and seasonal aspects of emergent plants in a tidal freshwater marsh.Estuaries 4:139–142.

    Google Scholar 

  • Ducklow, H. W., D. A. Purdie, P. J. LeB. Williams, and J. M. Davies. 1986. Bacterioplankton: a sink for carbon in a coastal marine plankton community.Science 232:865–867.

    Google Scholar 

  • Dukes, J. C., R. C. Axtell, and K. L. Knight. 1974. Additional studies of the effects of salt marsh impoundments on mosquito populations. Report number 102, Water Resources Research Institute, University of North Carolina (UNC-WRRI-74-102), 38 pp.

  • Erkenbrecher, C. W., Jr., and L. H. Stevenson. 1978. The transport of microbial biomass and suspended material in a high-marsh creek.Canadian Journal of Microbiology 24:839–846.

    PubMed  Google Scholar 

  • Gallagher, J. L., R.J. Reimold, R. A. Linthurst, and W.J. Pfeiffer. 1980. Aerial production, mortality, and mineral accumulation—export dynamics inSpartina alterniflora andJuncus roemerianus plant stands in a Georgia salt marsh.Ecology 61:303–312.

    Google Scholar 

  • Giese, G. L., H. B. Wilder, and G. G. Parker, Jr. 1985. Hydrology of major estuaries and sounds of North Carolina. US Geological Survey Water-Supply Paper 2221, Superintendant of Documents number: I 19.13:2221, US Government Printing Office, Washington, DC, 108 pp.

    Google Scholar 

  • Gilmore, R. G. 1984. Fishes and macrocrustacean population dynamics in a tidally influenced impounded sub-tropical marsh. Section 2in D. B. Carlson, R. G. Gilmore, and J. Rey (eds.), Impoundment management. Final Report: CM-47 anmd CM-73. Unpublished report to Florida Department of Environmental Regulation, Coastal Zone Management Department, 103 pp.

  • Gilmore, R. G., C. J. Donohoe, and D. W. Cooke. 1982. A comparison of the fish populations and habitat in open and closed salt marsh impoundments in east-central Florida.Northeast Gulf Science 5:25–37.

    Google Scholar 

  • Gleason, M. L., D. A. Elmer, N. C. Pien, and J. S. Fisher. 1979. Effects of stem density upon sediment retention by salt marsh cord grass,Spartina alterniflora Loisel.Estuaries 2:271–273.

    Google Scholar 

  • Gordon, D. C., Jr., P. J. Cranford, and C. Desplanque. 1985. Observations on the ecological importance of salt marshes in the Cumberland Basin, a macrotidal estuary in the Bay of Fundy.Estuarine, Coastal, and Shelf Science 20:205–227.

    Google Scholar 

  • Gosselink, J. G., E. P. Odum, and R. M. Pope. 1974. The value of the tidal marsh. Center for Wetland Resources, Louisiana State University, Baton Rouge, Louisiana, 30 pp.

    Google Scholar 

  • Haines, E. B. 1979. Interactions between Georgia salt marshes and coastal waters: a changing paradigm. Pages 35–46in R. J. Livingston (ed.), Ecological processes in coastal and marine systems. Plenum, New York.

    Google Scholar 

  • Haines, E. B., and R. B. Hanson. 1979. Experimental degradation of detritus made from the salt marsh plantsSpartina alterniflora Loisel.,Salicornia virginica L., andJuncus roemerianus Scheele. 1979.Journal of Experimental Marine Biology and Ecology 40:27–40.

    Google Scholar 

  • Haines, E. B., A. Chalmers, R. Hanson, and B. Sherr. 1977. Nitrogen pools and fluxes in a Georgia salt marsh. Pages 241–254in M. Wiley (ed.), Estuarine processes, vol. 2. Academic Press, New York.

    Google Scholar 

  • Hanson, R. B. 1977a. Comparison of nitrogen fixation activity in tall and shortSpartina alterniflora salt marsh soils.Applied Environmental Microbiology 33:596–602.

    Google Scholar 

  • Hanson, R. B. 1977b. Nitrogen fixation (acetylene reduction) in a salt marsh amended with sewage sludge and organic carbon and nitrogen compounds.Applied Environmental Microbiology 33:846–852.

    Google Scholar 

  • Hanson, R. B. 1982. Organic nitrogen and caloric content of detritus. II. Microbial biomass and activity.Estuarine, Coastal, and Shelf Science 14:325–336.

    Google Scholar 

  • Harriss, R. C., B. W. Ribelin, and C. Dreyer. 1980. Source and variability of suspended particulates and organic carbon in a salt marsh estuary. Pages 371–384in P. Hamilton and K. B. MacDonald (eds.), Estuarine and wetland processes. Plenum, New York.

    Google Scholar 

  • Heinle, D. R., and S. A. Flemer. 1976. Flows of materials between poorly flooded tidal marshes and an estuary.Marine Biology 35:359–373.

    Google Scholar 

  • Heinle, D. R., R. P. Harris, J. F. Ustach, and D. A. Flemer. 1977. Detritus as food for estuarine copepods.Marine Biology 40:341–353.

    Google Scholar 

  • Heitzman, B. 1978. Management of salt marsh impoundments for waterfowl in North Carolina. North Carolina Wildlife Resources Commission, Raleigh, 35 pp.

    Google Scholar 

  • Herke, W. H., and B. D. Rogers. 1984. Comprehensive estuarine nursery study completed.Fisheries (Bethesda) 9:12–16.

    Google Scholar 

  • Hopkinson, C. S., and J. P. Schubauer. 1984. Static and dynamic aspects of nitrogen cycling in the salt marsh graminoidSpartina alterniflora.Ecology 65:961–969.

    Google Scholar 

  • Howarth, R. W. 1984. The ecological significance of sulfur in the energy dynamics of salt marsh and coastal marine sediments.Biogeochemistry 1:5–27.

    Google Scholar 

  • Imberger, J., T. Berman, R. R. Christian, E. B. Sherr, D. C. Whitney, L. R. Pomeroy, R. G. Wiegert, and W. J. Wiebe. 1983. The influence of water motion on the distribution and transport of materials in a salt marsh estuary.Limnology and Oceanography 28:201–214.

    Google Scholar 

  • Isaji, T., M. L. Spaulding, and J. Stace. 1985. Tidal exchange between a coastal lagoon and offshore waters.Estuaries 8:203–216.

    Google Scholar 

  • Johnson, A. S., H. O. Hillestad, S. F. Shanholtzer, and G. F. Shanholtzer. 1974. An ecological survey of the coastal region of Georgia. National Park Service Scientific Monograph Series, number 3. National Park Service Publication number NPS 116. US Government Printing Office, Washington, DC, stock number 2405-00563. 233 pp.

    Google Scholar 

  • Jordan, T. E., D. L. Correll, and D. F. Whigham. 1983. Nutrient flux in the Rhode River: tidal exchange of nutrients by brackish marshes.Estuarine, Coastal and Shelf Science 17:651–667.

    Google Scholar 

  • Kaplan, W., I. Valiela, and J. M. Teal. 1979. Denitrification in a salt marsh ecosystem.Limnology and Oceanography 24:726–734.

    Google Scholar 

  • Keefe, C. W. 1972. Marsh production: a summary of the literature.Contributions in Marine Science 16:163–181.

    Google Scholar 

  • Kelley, B.J., W. D. Marshall, H. N. McKellar, Jr., W. R. D. Porcher, and R. Zingmark. 1985. Primary production and community metabolism in coastal salt water impoundments [abstr.].Estuaries 8:40A.

    Google Scholar 

  • Kirby-Smith, W. W. 1975. The detritus problem and the feeding and digestion of an estuarine organism. Pages 469–479in M. Wiley (ed.), Estuarine processes, vol. 1. Academic Press, New York.

    Google Scholar 

  • LaSalle, R. N., and K. L. Knight. 1974. Effects of salt marsh impoundments on mosquito populations. Report number 82, Water Resources Research Institute, University of North Carolina (UNC-WRRI-74-82), 85 pp.

  • Lee, W. G., and T. R. Partridge. 1983. Rates of spread ofSpartina anglica and sediment accretion in the New River Estuary, Invercargill, New Zealand.New Zealand Journal of Botany 21:231–236.

    Google Scholar 

  • Leenhouts, W. P. 1983. Marsh and water management plan, Merritt Island National Wildlife Refuge. Merritt Island National Wildlife Refuge, Titusville, Florida, 32 pp.

    Google Scholar 

  • Leenhouts, W. P., and J. L. Baker. 1982. Vegetation dynamics in dusky seaside sparrow habitat on Merritt Island National Wildlife Refuge.Wildlife Society Bulletin 10:127–132.

    Google Scholar 

  • Lewis, V. P., and D. S. Peters. 1984. Menhaden: a single step from vascular plant to fishery harvest.Journal of Experimental Marine Biology and Ecology 84:95–100.

    Google Scholar 

  • Linley, J. R., and J. B. Davies. 1971. Sandflies and tourism in Florida and the Bahamas and Caribbean area.Journal of Economic Entomology 64:264–278.

    Google Scholar 

  • Lovelock, J. E. 1979. Gaia: a new look at life on earth. Oxford University Press, New York, 157 pp.

    Google Scholar 

  • Manzi, J. J., V. G. Burrell, and W. Z. Carson. 1977. A comparison of growth and survival of subtidalCrassostrea virginica (Gmelin) in South Carolina salt marsh impoundments.Aquaculture 12:293–310.

    Google Scholar 

  • Marinucci, A. C. 1982. Trophic importanceof Spartina alterniflora production and decomposition to the marsh-estuarine ecosystem.Biological Conservation 22:35–58.

    Google Scholar 

  • Marsh, D. H., and W. E. Odum. 1979. Effect of suspension and sedimentation on the amount of microbial colonization of salt marsh microdetritus.Estuaries 2:184–188.

    Google Scholar 

  • McCoy, E. D. 1979. Ecological control of mosquitoes on Florida's east coast: an overview.Proceedings of the Florida Anti-mosquito Association 50:20–23.

    Google Scholar 

  • McKellar, H. N., Jr., and W. D. Marshall. 1985. Aquatic productivity and tidal nutrient exchanges in coastal wetland impoundments of South Carolina. Pages 85–102in C. F. Bryan, P. J. Zwank, and R. H. Chabrek (eds.), Proceedings of the fourth coastal marsh and estuary management symposium. Louisiana Cooperative Fishery Research Unit and Louisiana Cooperative Wildlife Research Unit, Louisiana State University, Baton Rouge.

    Google Scholar 

  • Meade, R. H. 1982. Sources, sinks, and storage of river sediment in the Atlantic drainage of the United States.Journal of Geology 90:235–252.

    Google Scholar 

  • Mendelssohn, I. A., and K. L. Marcellus. 1976. Angiosperm production of three Virginia marshes in various salinity and soil nutrient regimes.Chesapeake Science 17:15–23.

    Google Scholar 

  • Miglarese, J. V., and P. A. Sandifer (eds.). 1982. An ecological characterization of South Carolina wetland impoundments. South Carolina Marine Resources Center Technical Report number 51, 132 pp.

  • Moll, R. A. 1977. Phytoplankton in a temperate zone salt marsh: net production and exchanges with coastal waters.Marine Biology 42:109–118.

    Google Scholar 

  • Montague, C. L. 1980a. The net influence of the mud fiddler crab,Uca pugnax, on carbon flow through a Georgia salt marsh: the importance of work by macroorganisms to the metabolism of ecosystems. PhD dissertation, University of Georgia, Athens, 157 pp.

    Google Scholar 

  • Montague, C. L. 1980b. A natural history of temperate western Atlantic fiddler crabs (genusUca) with reference to their impact on the salt marsh.Contributions in Marine Science 23:25–55.

    Google Scholar 

  • Montague, C. L. 1982. The influence a fiddler crab burrows and burrowing on metabolic processes in salt marsh sediments. Pages 283–301in V. S. Kennedy (ed.), Estuarine comparisons. Academic Press, New York.

    Google Scholar 

  • Montague, C. L. 1986. Influence of biota on erodibility of sediments. Pages 251–269in A.J. Mehta (ed.), Estuarine cohesive sediment dynamics. Springer-Verlag, New York.

    Google Scholar 

  • Montague, C. L., S. M. Bunker, E. B. Haines, M. L. Pace, and R. L. Wetzel. 1981. Aquatic macroconsumers. Pages 69–85in L. R. Pomeroy and R. G. Wiegert (eds.), The ecology of a salt marsh. Springer-Verlag, New York.

    Google Scholar 

  • Montague, C. L., A. V. Zale, and H. F. Percival. 1985. A conceptual model of salt marsh management on Merritt Island National Wildlife Refuge, Florida. Final Report. Technical Report number 17, Florida Cooperative Fish and Wildlife Research Unit, University of Florida, Gainesville.

    Google Scholar 

  • Morgan, P. H., A. S. Johnson, W. P. Baldwin, and J. L. Landers. 1975. Characteristics and management of tidal impoundments for wildlife in a South Carolina estuary.Proceedings of the Annual Conference, Southeastern Association of Game and Fish Commissioners 29:526–539.

    Google Scholar 

  • Newell, R. C. 1965. The role of detritus in the nutrition of two marine deposit feeders, the prosobranchHydrobia ulvae and the bivalveMacoma balthica.Proceedings of the Zoological Society of London 144:24–45.

    Google Scholar 

  • Nixon, S. W. 1980. Between coastal marshes and coastal waters: a review of twenty years of speculation and research on the role of salt marshes in estuarine productivity and water chemistry. Pages 437–525in P. Hamilton and K. B. MacDonald (eds.), Estuarine and wetland processes. Plenum, New York.

    Google Scholar 

  • Nixon, S. W. 1982. The ecology of New England high salt marshes: a community profile. US Fish and Wildlife Service, Office of Biological Services, Washington, DC, FWS/ OBS-81/55, 70 pp.

    Google Scholar 

  • Odum, E. P. 1980. The status of three ecosystem-level hypotheses regarding salt marsh estuaries: tidal subsidy, out-welling, and detritus-based food chains. Pages 485–495in V. S. Kennedy (ed.), Estuarine perspectives. Academic Press, New York.

    Google Scholar 

  • Odum, E. P., and A. E. Smalley. 1959. Comparison of population energy flow of a herbivorous and a deposit-feeding invertebrate in a salt marsh ecosystem.Proceedings of the National Academy of Sciences 45:617–622.

    Google Scholar 

  • Odum, E. P., J. B. Birch, and J. L. Cooley. 1983. Comparison of giant cutgrass productivity in tidal and impounded marshes with special reference to tidal subsidy and waste assimilation.Estuaries 6:88–94.

    Google Scholar 

  • Odum, W. E. 1966. The food and feeding of the striped mullet,Mugil cephalus, in relation to the environment. MS thesis, University of Miami, Miami, Florida, 118 pp.

    Google Scholar 

  • Odum, W. E. 1969. The structure of detritus based food chains in a south Florida mangrove system. PhD dissertation, University of Miami, Miami, Florida, 162 pp.

    Google Scholar 

  • Odum, W. E. 1970a. Insidious alteration of the estuarine environment.Transactions of the American Fisheries Society 99:836–847.

    Google Scholar 

  • Odum, W. E. 1970b. Utilization of the direct grazing and plant detritus food chain by the striped mulletMugil cephalus. Pages 222–240in J. H. Steele (ed.), Marine food chains: a symposium. Oliver and Boyd, Edinburgh, UK.

    Google Scholar 

  • Odum, W. E., and E. J. Heald. 1972. Trophic analysis of an estuarine mangrove community.Bulletin of Marine Science 22:671–738.

    Google Scholar 

  • Odum, W. E., and E. J. Heald. 1975. The detritus-based food web of an estuarine mangrove community. Pages 265–286in L. E. Cronin (ed.), Estuarine research, vol. 1. Academic Press, New York.

    Google Scholar 

  • Odum, W. E., and M. A. Heywood. 1978. Decomposition of intertidal freshwater marsh plants. Pages 87–97in R. E. Good, D. F. Whigham, and R. L. Simpson (eds.), Freshwater wetlands: ecological processes and management potential. Academic Press, New York.

    Google Scholar 

  • Odum, W. E., J. C. Zieman, and E. J. Heald. 1973. The importance of vascular plant detritus to estuaries. Pages 91–114in R. H. Chabrek (ed.), Proceedings of the coastal marsh and estuary management symposium. Louisiana State University, Baton Rouge.

    Google Scholar 

  • Odum, W. E., J. S. Fisher, and J. C. Pickral. 1979. Factors controlling the flux of particulate organic carbon from estuarine wetlands. Pages 69–80in R. J. Livingston (ed.), Ecological processes in coastal and marine systems. Plenum, New York.

    Google Scholar 

  • Odum, W. E., T.J. Smith III, J. K. Hoover, and C. C. McIvor. 1984. The ecology of tidal freshwater marshes of the United States east coast: a community profile. US Fish and Wildlife Service FWS/OBS-83/17, 177 pp.

  • Olmi, E.J., III, P.A. Sandifer, and J. C. McGovern. 1985. Recruitment patterns of penaeid shrimps and fishes to waterfowl impoundments and non-impounded saltmarsh in South Carolina [abstr.]Estuaries 8(2B):41A.

    Google Scholar 

  • Parker, R. R., J. Sibert, and T.J. Brown. 1975. Inhibition of primary productivity through heterotrophic competition for nitrate in a stratified estuary.Journal of the Fisheries Research Board of Canada 32:72–77.

    Google Scholar 

  • Patrick, W. H., Jr., and R. A. Khalid. 1974. Phosphate release and absorption by soils and sediments: effect of aerobic and anaerobic conditions.Science 186:53–55.

    Google Scholar 

  • Peterson, C. H. 1981. The ecological role of mud flats in estuarine systems. Pages 184–192in R. C. Carey, P. S. Markovits, and J. B. Kirkwood (eds.), Proceedings of a U.S. Fish and Wildlife Service Workshop on coastal ecosystems of the Southeastern United States. US Fish and Wildlife Service, Office of Biological Services, Washington, DC, FWS/OBS-80/59.

    Google Scholar 

  • Pomeroy, L. R., R. E. Johannes, E. P. Odum, and B. Roffman. 1969. The phosphorus and zinc cycles and productivity of a salt marsh. Pages 412–419in D. J. Nelson and F. C. Evans (eds.), Symposium on radio-ecology. US Atomic Energy Commission, Washington, DC.

    Google Scholar 

  • Pomeroy, L. R., K. Bancroft, J. Breed, R. R. Christian, D. Frankenberg, J. R. Hall, L. G. Maurer, W. J. Wiebe, R. G. Wiegert, and R. L. Wetzel. 1977. Flux of organic matter through a salt marsh. Pages 270–279in M. Wiley (ed.), Estuarine processes, vol. 2. Academic Press, New York.

    Google Scholar 

  • Provost, M. W. 1968. Managing impounded salt marsh for mosquito control and estuarine resource conservation. Pages 163–171 m J. D. Newsom (ed.), Proceedings of the marsh and estuary management symposium. Division of Continuing Education, Louisiana State University, Baton Rouge.

    Google Scholar 

  • Provost, M. W. 1973. Salt marsh management in Florida.Proceedings of the Tall Timbers Conference on Ecology of Animal Control by Habitat Management 5:5–17.

    Google Scholar 

  • Provost, M. W. 1976. Tidal datum planes circumscribing salt marshes.Bulletin of Marine Science 26:558–563.

    Google Scholar 

  • Provost, M. W. 1977. Source reduction in salt marsh mosquito control: past and future.Mosquito News 37:689–698.

    Google Scholar 

  • Rey, J. R., T. Kain, R. Crossman, F. Vose, and F. Perez. 1984. Zooplankton and marsh vegetation in a recently re-opened mosquito control impoundment. Section 3in D. B. Carlson, R. G. Gilmore, and J. R. Rey (eds.), Impoundment management. Final Report: CM-47 and CM-73. Unpublished report to the Coastal Zone Management Office, Florida Department of Environmental Regulation, Tallahassee, Florida, 113 pp.

    Google Scholar 

  • Richard, G. A. 1978. Seasonal and environmental variations in sediment accretion in a Long Island salt marsh.Estuaries 1:29–35.

    Google Scholar 

  • Ryther, J. H., and W. M. Dunstan. 1971. Nitrogen, phosphorus, and eutrophication in the coastal marine environment.Science 171:1008–1013.

    PubMed  Google Scholar 

  • Sandifer, P. A., J. V. Miglarese, D. R. Calder, J.J. Manzi, and L. A. Barclay. 1980. Ecological characterization of the Sea Island coastal region of South Carolina and Georgia. III. Biological features of the characterization area. US Fish and Wildlife Service, Office of Biological Services, Washington, DC, FWS/OBS-79/42, 620 pp.

    Google Scholar 

  • Schelske, C. L., and E. P. Odum. 1961. Mechanisms maintaining high productivity in Georgia Estuaries.Proceedings of the Gulf and Caribbean Fisheries Institute 14:75–80.

    Google Scholar 

  • Schooley, J. K. 1980. The structure and function of warm temperature estuarine fish communities, PhD dissertation, University of Florida, Gainesville, 107 pp.

    Google Scholar 

  • Schwartz, C. W. 1976. Ecological comparisons between a freshwater tidal marsh and adjoining impoundment in southeastern Pennsylvania. MS thesis, Pennsylvania State University, State College, 77 pp.

  • Settlemyre, J. L., and L. R. Gardner. 1977. Suspended sediment flux through a salt marsh drainage basin.Estuarine and Coastal Marine Science 5:653–663.

    Google Scholar 

  • Shisler, J. K., and D. M. Jobbins. 1977. Tidal variations in the movement of organic carbon in New Jersey salt marshes.Marine Biology 40:127–134.

    Google Scholar 

  • Simpson, R. L., R. E. Good, M. A. Leck, and D. F. Whigham. 1983. The ecology of freshwater tidal wetlands.BioScience 33:255–259.

    Google Scholar 

  • Swiderek, P. K., A. S. Johnson, P. E. Hale, and R. L. Joyner. 1985. Sea purslane, gulf coast muskgrass, and widgeongrass in brackish impoundments. Draft manuscript presented at waterfowl in winter symposium and workshop, 7–10 January 1985, Galveston, Texas.

  • Tenore, K. R. 1977. Growth ofCapitella capitata cultured on various levels of detritus derived from different sources.Limnology and Oceanography 22:936–941.

    Google Scholar 

  • Tenore, K. R., and D. Rice. 1980. A review of trophic factors affecting secondary production of deposit feeders. Pages 325–340in K. R. Tenore and B. C. Coull (eds.), Marine benthic dynamics. University of South Carolina Press, Columbia.

    Google Scholar 

  • Tenore, K. R., R. B. Hanson, B. Dornseif, and G. Wiederhold. 1979. The effect of organic nitrogen supplement on the utilization of different sources of detritus.Limnology and Oceanography 24:350–355.

    Google Scholar 

  • Tenore, K. R., L. Cammen, S. E. G. Findlay, and N. Phillips. 1982. Perspectives of research on detritus: do factors controlling the availability of detritus to macroconsumers depend on its source?Journal of Marine Research 40:473–490.

    Google Scholar 

  • Thayer, G. W. 1974. Identity and regulation of nutrients limiting phytoplankton production in the shallow estuaries near Beaufort, N.C.Oecologia 14:75–92.

    Google Scholar 

  • Tiner, R. W., Jr. 1977. An inventory of South Carolina's coastal marshes. Technical Report number 23, South Carolina Marine Resources Center, South Carolina Wildlife and Marine Resources Department, Charleston, 33 pp.

    Google Scholar 

  • Tompkins, M. E. 1986. South Carolina's managed wetlands: their status, management and use. Draft preliminary public report of survey of management and uses of managed coastal wetlands. Department of Government and International Studies, University of South Carolina, Columbia (unpublished manuscript).

    Google Scholar 

  • Turner, R. E. 1976. Geographic variation in salt marsh macrophyte production: a review.Contributions in Marine Science 20:47–68.

    Google Scholar 

  • Turner, R. E. 1977. Intertidal vegetation and commercial yields of penaeid shrimp.Transactions of the American Fisheries Society 106:411–416.

    Google Scholar 

  • USFWS. 1984. Draft highlights of reconnaisance level mapping and national trend analysis: results for the state of Florida. Regional Wetlands Coordinator, US Fish and Wildlife Service, Atlanta, Georgia 30303-3376.

    Google Scholar 

  • Ustach, J. F. 1982. Algae, bacteria and detritus as food for the harpacticoid copepod,Heteropsyllus pseudonunni.Journal of Experimental Marine Biology and Ecology 64:203–214.

    Google Scholar 

  • Valiela, I. 1984. Marine ecological processes. Springer-Verlag, New York, 546 pp.

    Google Scholar 

  • Valiela, I., and J. M. Teal. 1979a. Inputs, outputs and interconversions of nitrogen in a salt marsh ecosystem. Pages 399–414in R. L. Jefferies and A. J. Davy (eds.), Ecological processes in coastal environments. Blackwell, London.

    Google Scholar 

  • Valiela, I., and J. M. Teal. 1979b. The nitrogen budget of a salt marsh ecosystem.Nature (London) 280:652–656.

    Google Scholar 

  • Valiela, I., J. M. Teal, and W. Sass. 1973. Nutrient retention in salt marsh plots experimentally fertilized with sewage sludge.Estuarine and Coastal Marine Science 1:261–269.

    Google Scholar 

  • Valiela, I., J. M. Teal, and W. G. Deuser. 1978a. The nature of growth forms in the salt marsh grassSpartina alterniflora.American Naturalist 112:461–470.

    Google Scholar 

  • Valiela, I., J. M. Teal, S. Volkman, D. Shafer, and E.J. Carpenter. 1978b. Nutrient and particulate fluxes in a salt marsh ecosystem: tidal exchanges and inputs by precipitation and ground water.Limnology and Oceanography 23:798–812.

    Google Scholar 

  • Van Raalte, C. D., I. Valiela, E.J. Carpenter, and J. M. Teal. 1974. Inhibition of nitrogen fixation in salt marshes measured by acetylene reduction.Estuarine and Coastal Marine Science 2:301–305.

    Google Scholar 

  • Voigts, D. K. 1976. Aquatic invertebrate abundance in relation to changing marsh vegetation.American Midland Naturalist 95:313–322.

    Google Scholar 

  • Wenner, C. A., H. R. Beatty, and W. A. Roumillat. 1985. Comparisons of the ichthyofauna in South Carolina coastal impoundments and adjacent tidal creeks [abstr.].Estuaries 8(2B):41A.

    Google Scholar 

  • Wetzel, R. L. 1977. Carbon resources of a benthic salt marsh invertebrate,Nassarius obsoletus Say (Mollusca: Nassaridae). Pages 293–308in M. Wiley (ed.), Estuarine processes, vol. 2. Academic Press, New York.

    Google Scholar 

  • Whigham, D. F., J. McCormick, R. E. Good, and R. L. Simpson. 1978. Biomass and primary production in freshwater tidal wetlands of the middle Atlantic coast. Pages 3–20in R. E. Good, D. F. Whigham, and R. L. Simpson (eds.), Freshwater wetlands: ecological processes and management potential. Academic Press, New York.

    Google Scholar 

  • Wicker, K. M., D. Davis, and D. Roberts. 1983. Rockefeller State Wildlife Refuge and Game Preserve: evaluation of wetland management techniques. Louisiana Department of Natural Resources, Baton Rouge, 84 pp.

    Google Scholar 

  • Wiegert, R. G. 1979. Ecological processes characteristic of coastalSpartina marshes of the south-eastern U.S.A. Pages 467–490in R. L. Jefferies and A. J. Davy (eds.), Ecological processes in coastal environments. Blackwell, London.

    Google Scholar 

  • Woodwell, G. M., R. A. Houghton, C. A. S. Hall, D.E. Whitney, R. A. Moll, and D. W. Juers. 1979. The Flax Pond ecosystem study: the annual metabolism and nutrient budgets of a salt marsh. Pages 491–511in R. L. Jefferies and A. J. Davy (eds.), Ecological processes in coastal environments. Blackwell, London.

    Google Scholar 

  • Zedler, J. B., T. Winfield, and P. Williams. 1980. Salt marsh productivity with natural and altered tidal circulation.Oecologia 44:236–240.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montague, C.L., Zale, A.V. & Percival, H.F. Ecological effects of coastal marsh impoundments: A review. Environmental Management 11, 743–756 (1987). https://doi.org/10.1007/BF01867242

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01867242

Key words

Navigation