Skip to main content
Log in

Determining size and dispersion of minimum viable populations for land management planning and species conservation

  • Research
  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

The concept of minimum populations of wildlife and plants has only recently been discussed in the literature. Population genetics has emerged as a basic underlying criterion for determining minimum population size. This paper presents a genetic framework and procedure for determining minimum viable population size and dispersion strategies in the context of multiple-use land management planning. A procedure is presented for determining minimum population size based on maintenance of genetic heterozygosity and reduction of inbreeding. A minimum effective population size (N e ) of 50 breeding animals is taken from the literature as the minimum shortterm size to keep inbreeding below 1% per generation. Steps in the procedure adjustN e to account for variance in progeny number, unequal sex ratios, overlapping generations, population fluctuations, and period of habitat/population constraint. The result is an approximate census number that falls within a range of effective population size of 50–500 individuals. This population range defines the time range of short- to long-term population fitness and evolutionary potential. The length of the term is a relative function of the species generation time. Two population dispersion strategies are proposed: core population and dispersed population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Avery, P. J. 1978. The effects of finite population size on models of linked overdominant loci.Genet. Res. Camb. 31:239–254.

    Google Scholar 

  • Bonnell, M. L., and R. K. Selander. 1974. Elephant seals: genetic variation and near extinction.Science 184:908–909.

    PubMed  Google Scholar 

  • Cameron, D. G., and E. R. Vyse. 1978. Heterozygosity in Yellowstone Park elkCervus canadensis. Biochem. Genetics 16(7–8):651–657.

    Google Scholar 

  • Chapman, F. M. 1925. The European starling as an American citizen.Nat. Hist. 25:480–485.

    Google Scholar 

  • Connolly, G. E. 1981. Trends in populations and harvests. Pages 225–244in O. C. Wallmo, ed. Mule and black-tailed deer of North America. University of Nebraska Press, Lincoln, NE.

    Google Scholar 

  • Craighead, J. J., J. Varney, and F. C. Craighead, Jr. 1974. A population analysis of the Yellowstone grizzly bears. Montana Forest and Conservation Experiment Station Bulletin 40. University of Montana, Missoula, MT.

    Google Scholar 

  • Crow, J. F., and N. E. Morton. 1955. Measurement of gene frequency drift in small populations.Evolution 9:202–214.

    Google Scholar 

  • Denniston, C. 1977. Small population size and genetic diversity: implications for endangered species. Pages 281–289in S. A. Temple, ed. Endangered birds: management techniques for preserving threatened species. University of Wisconsin Press, Madison, WI.

    Google Scholar 

  • Ehrlich, P., and A. Ehrlich. 1981. Extinction: the causes and consequences of the disappearance of species. Random House, New York, NY. 303 pp.

    Google Scholar 

  • Endangered Species Technical Bulletin. 1979. Special report: last ditch contingency plan seen as only hope for California condor. US Department of Interior, Fish and Wildlife Service. Endangered Species Program, Washington, DC. 6 pp.

  • Falconer, D. S. 1960. Introduction to quantitative genetics. Ronald Press, New York, NY. 365 pp.

    Google Scholar 

  • Frankel, O. H., and M. E. Soulé. 1981. Conservation and evolution. Cambridge University Press, New York, NY. 327 pp.

    Google Scholar 

  • Franklin, I. R. 1980. Evolutionary change in small populations. Pages 135–149in M. E. Soulé and B. A. Wilcox, eds. Conservation biology: an evolutionary-ecological approach. Sinauer Assoc., Sunderland, MA.

    Google Scholar 

  • Greenwood, P. J., P. H. Harvey, and C. M. Perrins. 1978. Inbreeding and dispersal in the great tit.Nature 271:52–54.

    Google Scholar 

  • Hoogland, J. L. 1982. Prairie dogs avoid extreme inbreeding.Science 215:1638–1641.

    Google Scholar 

  • Kessel, B. 1953. Distribution and migration of the European starling in North America.Condor 55:49–68.

    Google Scholar 

  • Kornfield, I., K. F. Beland, J. R. Moring, and F. W. Kircheis. 1981. Genetic similarity among Arctic char (Salvelinus alpinus) and implications for their management.Can. J. Fish. Aquat. Sci. 38:32–39.

    Google Scholar 

  • Lovejoy, T. E. 1977. Genetic aspects of dwindling populations: a review. Pages 275–279in S. A. Temple, ed. Endangered birds: management techniques for preserving threatened species. University of Wisconsin Press, Madison, WI.

    Google Scholar 

  • MacDonald, D., and R. A. Jantzen. 1967. Management of the Merriam's Turkey. Pages 483–534in O. H. Hewitt, ed. The wild turkey and its management. The Wildlife Society, Washington, DC.

    Google Scholar 

  • McCullough, D. R. 1979. The George Reserve deer herd. University of Michigan Press, Ann Arbor, MI. 271 pp.

    Google Scholar 

  • Manlove, M. N., R. Baccus, M. R. Pelton, M. H. Smith, and D. Gruber. 1980. Protein variation in black bear populations. Pages 37–41in C. J. Martinka and K. L. McArthur, eds. Proceedings of 4th International Conference on Bear Research and Management, 1977. Bear Biologists Association, Missoula, MT.

    Google Scholar 

  • Mealey, S. P., and J. R. Horn. 1981. Integrating wildlife habitat objectives into the Forest plan.Trans. N. Amer. Wildl. and Natur. Resour. Conf. 46:488–500.

    Google Scholar 

  • Morgan, R. P. II, J. A. Chapman, L. A. Noe, and C. J. Henny. 1974. Electrophoresis as a management tool. Pages 63–71in Trans. N.E. Fish and Wildlife Conf.

  • Myers, N. 1979. The sinking ark. Pergamon Press, Elmsford, NY. 307 pp.

    Google Scholar 

  • Nei, M., T. Maruyama, and R. Chakraborty. 1975. The bottleneck effect and genetic variability in populations.Evolution 29(1):1–10.

    Google Scholar 

  • Packer, C. 1979. Inter-troop transfer and inbreeding avoidance inPapio anubis.Anim. Behav. 27(1):1–36.

    Google Scholar 

  • Patton, D.R. 1982. Wildlife habitat in land management planning: some ideas and principles. Pages 33–38in Proc. of the workshop: The effects of land management practices on fish and wildlife in southwestern conifer forests. Tucson, AZ, Feb. 16–17,1982. School of Renewable Natural Resources, University of Arizona, Tucson, AZ.

    Google Scholar 

  • Peterson, L. E., and A. H. Richardson. 1973. Merriam's wild turkey in the Black Hills in South Dakota. Pages 3–10in G. C. Sanderson, and H. C. Schultz, eds. Wild turkey management: current problems and programs. University of Missouri Press, Columbia, MO.

    Google Scholar 

  • Ralls, K., K. Brugger, and J. Ballou. 1979. Inbreeding and juvenile mortality in small populations of ungulates.Science 206:1101–1103.

    PubMed  Google Scholar 

  • Ryman, N., R. Baccus, C. Reuterwall, and M. H. Smith. 1981. Effective population size, generation interval, and potential loss of genetic variability in game species under different hunting regimes.Oikos 36(3):257–266.

    Google Scholar 

  • Ryman, N., G. Beckman, G. Bruun-Peterson, and C. Reuterwall. 1977. Variability of red cell enzymes and genetic implications of management policies in Scandinavian mouse (Alces alces).Hereditas 85:157–165.

    Google Scholar 

  • Seal, U. S. 1977. The Noah's Ark problem: multigenerational management of wild species in captivity. Pages 303–313in S. A. Temple, ed. Endangered birds: management techniques for preserving threatened species. University of Wisconsin Press, Madison, WI.

    Google Scholar 

  • Selander, R. K., and D. Kaufman. 1973. Self-fertilization and genetic population structure in a colonizing land snail.Proc. Nat. Acad. Sci. 70:1186–1190.

    Google Scholar 

  • Selander, R. K., D. W. Kaufman, R. J. Baker, and S. L. Williams. 1975. Genic and chromosomal differentiation in pocket gophers of theGeomys sursarius group.Evolution 28:557–564.

    Google Scholar 

  • Senner, J. W. 1980. Inbreeding depression and the survival of zoo populations. Pages 209–224in M. E. Soulé and B. A. Wilcox, eds. Conservation biology: an evolutionary-ecological approach. Sinauer Assoc, Sunderland, MA.

    Google Scholar 

  • Shaffer, M. L. 1978. Determing minimum viable population sizes: a case study of the grizzly bear (Ursus arctos L.). Ph.D. Dissertation, Duke University, Durham, NC. 206 pp.

    Google Scholar 

  • Shaffer, M. L. 1981. Minimum population sizes for species conservation.BioScience 31 (2):131–134.

    Google Scholar 

  • Short, H. L. 1979. Deer in Arizona and New Mexico: their ecology and a theory explaining recent population decreases. US Department of Agriculture Forest Service, Gen. Tech. Rep. RM-70, Rocky Mt. For. and Range Exp. Sta., Fort Collins, CO. 25 p.

    Google Scholar 

  • Smith, M. H., H. O. Hillestad, M. N. Manlove, and R. L. Marchinton. 1976. Use of population genetics data for the management of fish and wildlife populations.Trans. N. Amer. Wildl. and Natur. Resour. Conf. 41:119–131.

    Google Scholar 

  • Soulé, M. E. 1980. Thresholds for survival: maintaining fitness and evolutionary potential. Pages 151–169in M. E. Soulé and B. A. Wilcox, eds. Conservation biology: an evolutionary-ecological perspective. Sinauer Assoc., Sunderland, MA.

    Google Scholar 

  • Trefethen, J. B., ed. 1975. The wild sheep in modern North America. Boone and Crocket Club and Winchester Press, New York, NY. 302 pp.

    Google Scholar 

  • Utter, F. M., F. W. Allendorf, and H. O. Hodgins. 1973. Genetic variability and relationships in Pacific salmon and related trout based on protein variations.Syst. Zool. 22(2):257–270.

    Google Scholar 

  • Utter, F. M., F. W. Allendorf, and B. May. 1976. The use of protein variation in the management of salmonid populations.Trans. N. Amer. Wildl. Natur. Resour. Conf. 41:373–384.

    Google Scholar 

  • Watts, T., and W. Conley. 1981. Extinction probabilities in a remnant population ofOvis canadensis mexicana.Acta Theriol. 26:393–405.

    Google Scholar 

  • Wright, S. 1983. Evolution in Mendelian populations.Genetics 16:97–159.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lehmkuhl, J.F. Determining size and dispersion of minimum viable populations for land management planning and species conservation. Environmental Management 8, 167–176 (1984). https://doi.org/10.1007/BF01866938

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01866938

Key words

Navigation