Skip to main content
Log in

Land use change and carbon exchange in the tropics: II. Estimates for the entire region: Reply

  • Forum
  • Published:
Environmental Management Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature cited

  • Bacastow, R. B., and C. D. Keeling. 1981. Atmospheric carbon dioxide concentration and the observed airborne fraction. Pages 103–112in B. Bolin (ed.), Carbon cycle modeling, SCOPE. John Wiley and Sons, Chichester, UK.

    Google Scholar 

  • Brown, S., and A. E. Lugo. 1982. The storage and production of organic matter in tropical forests and their role in the global carbon cycle.Biotropica 14:161–187.

    Google Scholar 

  • Brown, S., and A. E. Lugo. 1984. Biomass of tropical forests: a new estimate based on forest volumes.Science 223:1290–1293.

    Google Scholar 

  • Detwiler, R. P. 1986a. Land use change and the global carbon cycle: the role of tropical soils.Biogeochemistry 2 (in press).

  • Detwiler, R. P. 1986b. Tropical forests and the global carbon cycle. Dissertation, Cornell University, Ithaca, New York.

    Google Scholar 

  • Detwiler, R. P., C. A. S. Hall, and P. Bogdonoff. 1985. Land-use change and carbon exchange in the tropics: II. Estimates for the entire region.Environmental Management 9:335–344.

    Google Scholar 

  • Emanuel, W. R., G. G. Killough, W. M. Post, and H. H. Shugart. 1984. Modeling terrestrial ecosystems in the global carbon cycle with shifts in carbon storage capacity by land-use change.Ecology 65:970–983.

    Google Scholar 

  • Hall, C. A. S., R. P. Detwiler, P. Bogdonoff, and S. Underhill. 1985. Land use change and carbon exchange in the tropics: I. Detailed estimates for Costa Rica, Panama, Peru, and Bolivia.Environmental Management 9:313–334.

    Google Scholar 

  • Keeling, C. D. 1973. Industrial production of carbon dioxide from fossil fuels and limestone.Tellus 25:174–198.

    Google Scholar 

  • Keeling, C. D. 1983. The global carbon cycle: what we know and could know from atmospheric, biospheric, and oceanic observations. Pages II.3-II.62in Proceedings of the carbon dioxide research conference: carbon dioxide, science and consensus. US Department of Energy, CONF-820970. National Technical Information Service, Springfield, Virginia.

    Google Scholar 

  • LaMarche, V. C., Jr., D. A. Graybill, H. C. Fritts, and M. R. Rose. 1984. Increasing atmospheric carbon dioxide: tree ring evidence for growth enhancement in natural vegetation.Science 225:1019–1021.

    Google Scholar 

  • Marland, G., and R. M. Rotty. 1983. Carbon dioxide emissions from fossil fuels: a procedure for estimation and results for 1950–1981. US Department of Energy, DOE/ NBB-0036. National Technical Information Service, Springfield, Virginia.

    Google Scholar 

  • Paerl, H. W. 1985. Enhancement of marine primary production by nitrogen-enriched acid rain.Nature 315:747–749.

    Google Scholar 

  • Peng, T.-H. 1985. Atmospheric CO2 variations based on the tree-ring13C record. Pages 123–131in E. T. Sundquist and W. S. Broecker (eds.), The carbon cycle and atmospheric CO2: natural variations Archean to present.Geophysical Monographs 32.

  • Peng, T.-H. 1986. Land use change and carbon exchange in the tropics: II. Estimates for the entire region:comment.Environmental Management 10:573–575 (this issue).

    Google Scholar 

  • Peng, T.-H., and W. S. Broecker. 1984. Ocean life cycles and the atmospheric CO2 content.Journal of Geophysical Research 89(C5):8170–8180.

    Google Scholar 

  • Peng, T.-H., and H. D. Freyer. 1986. Revised estimates of atmospheric CO2 variations based on the tree-ring13C record.In J. R. Trabalka and D. E. Reichle (eds.), The changing carbon cycle: a global analysis. Springer-Verlag, New York (in press).

    Google Scholar 

  • Peng, T.-H., W. S. Broecker, H. D. Freyer, and S. Trumbore. 1983. A deconvolution of the tree ring based δ13C record.Journal of Geophysical Research 88(C6):3609–3620.

    Google Scholar 

  • Rogers, H. H., J. F. Thomas, and G. E. Bingham. 1983. Response of agronomic and forest species to elevated atmospheric carbon dioxide.Science 220:428–429.

    Google Scholar 

  • Rotty, R. M. 1982. Distribution of and changes in industrial carbon dioxide production.Journal of Geophysical Research 88(C2):1301–1308.

    Google Scholar 

  • Siegenthaler, U., and H. Oeschger. 1986. Biospheric CO2 sources since 1800 A.D. reconstructed by deconvolution of ice core CO2 data.Tellus (in press).

  • Stuiver, M., R. L. Burk, and P. D. Quay. 1984.13C/12C ratios in tree rings and the transfer of biospheric carbon to the atmosphere.Journal of Geophysical Research 89(D7):11731–11748.

    Google Scholar 

  • Takahashi, T. 1985. Research summary: geographical and time variability of partial pressure of CO2 in surface waters of the Atlantic Oceean. US Department of Energy,CDIC Communications, Spring 1985:4–5.

  • Takahashi, T., and A. E. G. Azevedo. 1982. The oceans as a CO2 reservoir. Pages 83–109in R. A. Reck and J. R. Hammell (eds.), Interpretation of climate and photochemical models, ozone and temperature measurements. American Institute of Physics, New York.

    Google Scholar 

  • Whittaker, R. H., and G. E. Likens. 1975. The biosphere and man. Pages 305–328in H. Leith and R. H. Whittaker (eds.), Primary productivity of the biosphere. Ecological studies 14. Springer-Verlag, Berlin.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Detwiler, R.P., Hall, C.A.S. Land use change and carbon exchange in the tropics: II. Estimates for the entire region: Reply. Environmental Management 10, 577–580 (1986). https://doi.org/10.1007/BF01866761

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01866761

Keywords

Navigation