Skip to main content
Log in

pH control of the third virial coefficient of hyaluronate solutions calculated from van der Waals forces by means of the Lifshitz-McLachlan susceptibility theory

  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Positive third virial coefficients and osmotic coefficients have been calculated for human umbilical cord hyaluronic acid solutions at pHs 6.0, 6.5, 7.0, 7.5, 8.0, and 8.5 and constant ionic strength 0.1. The calculations are based on experimental axial flow birefringence and radial linear dichroism data previously reported and the Lifshitz-McLachlan field theory of van der Waals forces. The second virial coefficients are negative, according to both this analysis and light scattering evidence, and reflect the tendency of hyaluronic acid to associate. This negativity denies the assumption of force additivity required by virial expansion theory.

The results are in reasonable agreement with those of light scattering studies, and indicate the extreme nonideality of hyaluronate solutions with a high degree of pH control of osmotic pressure. The data are explained within the context of statistical mechanical and field theories of van der Waals forces, and the osmotic pressure of a solution is related to its optical properties. The numerical method used offers a way of exploring the applicability of modern interparticle force theory to biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrikosova, I. I.; Deryagin, B. V. 1957.Sov. Phys JETP 4, 2–10.

    Google Scholar 

  • Adams, E. T.; Filmer, D. L. 1966.Biochemistry 5, 2971.

    Google Scholar 

  • Barrett, T. W. 1978.Biopolymers 17, 1567–1579.

    Google Scholar 

  • Barrett, T. W. 1979.Biopolymers 18, 351–357.

    Google Scholar 

  • Barrett, T. W. 1980.Adv. Colloid Interface Sci. 12, 85–107.

    Google Scholar 

  • Barrett, T. W.; Baxter, J. E. 1982.Physiol. Chem. Phys. 14, 19–29.

    Google Scholar 

  • Barrett, T. W.; Harrington, R. E. 1977.Biopolymers 16, 2167–2188.

    Google Scholar 

  • Barrett, T. W.; Peticolas, W. L. 1979.J. Raman Spectrose 8, 35–38.

    Google Scholar 

  • Buckingham, A. D. 1965.Faraday Soc. Disc. 40, 232–238.

    Google Scholar 

  • Buff, F. P.; Stillinger, F. H. 1956.J. Chem. Phys. 25, 312–318.

    Google Scholar 

  • Casimir, H. B. G. 1948.Proc. Koniklijke Nederlandse Akademie Van Wetenschappen 51, 793–804.

    Google Scholar 

  • Casimir, H. B. G. 1949.J. Chim. Phys. 46, 407–409.

    Google Scholar 

  • Casimir, H. B. G.; Polder, D. 1946.Nature 158, 787–788.

    Google Scholar 

  • Casimir, H. B. G.; Polder, D. 1948.Phys. Rev. 73, 360–372.

    Google Scholar 

  • Chakrabarti, B. 1977.Arch. Biochem. Biophys. 180, 146–150.

    Google Scholar 

  • Davies, B.; Ninham, B. W. 1972.J. Chem. Phys. 56, 5797–5801.

    Google Scholar 

  • de Boer, J. H. 1936.Trans. Faraday Soc. 32, 10–38.

    Google Scholar 

  • Debye, P. 1920.Phys. Z. 21, 178–187.

    Google Scholar 

  • Deryagin, B. V.; Abrikosova, I. I. 1957.Sov. Physics JEPT 3, 819–829.

    Google Scholar 

  • Deryagin, B. V.; Landau, L. D. 1941.Acta Physiochim. U.S.S.R. 14, 633–662.

    Google Scholar 

  • DeVries, H. 1889.Z. Physik. Chem. 3, 103–112.

    Google Scholar 

  • Dzaloshinskii, I. E.; Lifshitz, E. M.; Pitaevskii, L. P. 1961.Adv. Phys. 10, 165–209.

    Google Scholar 

  • Eisenschitz, R.; London, F. 1930.Z. Phys. 60, 491–527.

    Google Scholar 

  • Falkenhagen, H. 1922.Phys. Z. 23, 87–95.

    Google Scholar 

  • Feyman, R. P. 1939.Phys. Rev. 56, 340–343.

    Google Scholar 

  • Fowkes, F. M. 1964.Ind. Eng. Chem. 56, 40–52.

    Google Scholar 

  • Fowkes, F. M. 1968.J. Colloid Interface Sci. 28, 493–505.

    Google Scholar 

  • Hamaker, H. C. 1937.Physica 4, 1058–1072.

    Google Scholar 

  • Heitler, W.; London, F. 1927.Z. Phys. 44, 455–472.

    Google Scholar 

  • Hellman, G. 1937.Einführung in die Quantenchemie, Leipzig: Deuticke.

    Google Scholar 

  • Hirschfelder, J. O.; Curtiss, C. F.; Bird, R. B. 1954.Molecular Theory of Gases and Liquids, New York: Wiley.

    Google Scholar 

  • Hirschfelder, J. O.; Meath, W. J. 1967.Adv. Chem. Phys. 12, 3–106.

    Google Scholar 

  • Howlett, G. J.; Jeffrey, P. D.; Nichol, L. W. 1972.J. Phys. Chem. 76, 777.

    Google Scholar 

  • Imura, H.; Okano, K. 1973.J. Chem. Phys. 58, 2763–2776.

    Google Scholar 

  • Israelachvili, J. N. 1973.J. Theoret. Biol. 42, 411–417.

    Google Scholar 

  • Israelachvili, J. N. 1974.Quart. Rev. Biophys. 6, 341–387.

    Google Scholar 

  • Israelachvili, J. N.; Ninham, B. W. 1977.J. Colloid Interface Sci. 58, 14–25.

    Google Scholar 

  • Jeffrey, P. D.; Milthorpe, B. K.; Nichol, L. W. 1976.Biochemistry 15, 4660.

    Google Scholar 

  • Keesom, W. H. 1921.Phys. Z. 22, 129–141.

    Google Scholar 

  • Kihara, T.; Honda, N. 1965.J. Phys. Soc. Jpn. 20, 15–19.

    Google Scholar 

  • Krupp, H. 1967.Adv. Colloid & Interface Sci. 1, 111–239.

    Google Scholar 

  • Landau, L. D.; Lifshitz, E. M. 1958.Statistical Physics, New York: Pergamon Press, Chapter 12.

    Google Scholar 

  • Landau, L. D.; Lifshitz, E. M. 1960.Electrodynamics of Continuous Media, New York: Pergamon Press, Chapter 13.

    Google Scholar 

  • Langbein, D. 1974.Theory of Van der Waals Attraction, New York: Springer Verlag.

    Google Scholar 

  • Laurent, T. C.; Gergely, J. 1955.J. Biol. Chem. 212, 325–333.

    Google Scholar 

  • Laurent, T. C.; Ogston, A. G. 1963.Biochem. J. 89, 249–253.

    Google Scholar 

  • LeNeveu, D. M.; Rand, R. P.; Gingell, D.; Parsegian, V. A. 1976a.Science 191, 399–400.

    Google Scholar 

  • LeNeveu, D. M.; Rand, R. P.; Parsegian, V. A. 1976b.Nature 259, 601–603.

    Google Scholar 

  • LeNeveu, D. M.; Rand, R. P.; Parsegian, V. A.; Gingell, D. 1977.Biophys. J. 18, 209–230.

    Google Scholar 

  • Lifshitz, E. M. 1955.J. Exp. Theoret. Phys. USSR 29, 94–110. (Sov. Physics JETP 1956,2, 73–83).

    Google Scholar 

  • London, F. 1930a.Z. Phys. 63, 245–279.

    Google Scholar 

  • London, F. 1930b.Z. Phys. Chem. (B) 11, 222–251.

    Google Scholar 

  • Longuet-Higgins, H. C. 1965.Faraday Soc. Disc. 40, 7–18.

    Google Scholar 

  • Mahanty, J.; Ninham, B. W. 1976.Dispersion Forces, New York: Academic Press.

    Google Scholar 

  • Margenau, H.; Kestner, N. R. 1971.Theory of Molecular Forces, 2nd edition, New York: Pergamon Press.

    Google Scholar 

  • Mayer, J. E. 1942.J. Chem. Phys. 10, 629–643.

    Google Scholar 

  • Mayer, J. E. 1950.J. Chem. Phys. 18, 1426–1436.

    Google Scholar 

  • Mayer, J. E.; Mayer, M. G. 1940.Statistical Mechanics, New York: Wiley.

    Google Scholar 

  • Matsubara, T. 1955.Progr. Theor. Physics 14, 351–378.

    Google Scholar 

  • McLachlan, A. D. 1963a.Proc. Roy. Soc. A271, 387–401.

    Google Scholar 

  • McLachlan, A. D. 1963b.Proc. Roy. Soc. A274, 80–90.

    Google Scholar 

  • McLachlan, A. D. 1963c.Mol. Phys. 6, 423–427.

    Google Scholar 

  • McLachlan, A. D. 1964a.Mol. Phys. 7, 381–388.

    Google Scholar 

  • McLachlan, A. D. 1964b.Mol. Phys. 8, 409–423.

    Google Scholar 

  • McLachlan, A. D. 1965.Discuss. Faraday Soc. 40, 239–245.

    Google Scholar 

  • McLachlan, A. D.; Gregory, R. D.; Ball, M. A. 1964.Mol. Phys. 7, 119–129.

    Google Scholar 

  • McMillan, W. G.; Mayer J. E. 1945.J. Chem. Phys. 13, 276–305.

    Google Scholar 

  • Milthorpe, B. K.; Jeffrey, P. D.; Nichol, L. W. 1975.Biophys. Chem. 3, 169.

    Google Scholar 

  • Mitchell, D. J.; Ninham, B. W.; Richmond, P. 1973a.Biophys. J. 13, 359–369.

    Google Scholar 

  • Mitchell, D. J.; Ninham, B. W.; Richmond, P. 1973b.Biophys. J. 13, 370–384.

    Google Scholar 

  • Nichol, L. W.; Ogston, A. C.; Preston, B. N. 1967.Biochem. J. 102, 407–416.

    Google Scholar 

  • Nichol, L. W.; Winsor, D. J. 1976.J. Phys. Chem. 80, 1980.

    Google Scholar 

  • Ninham, B. W.; Parsegian, V. A. 1970.J. Chem. Phys. 53, 3398–3402.

    Google Scholar 

  • Ogston, A. G. 1962.Arch. Biochem. Biophys. Suppl. 1, 39–51.

    Google Scholar 

  • Ogston, A. G.; Winsor, D. J. 1975.J. Phys. Chem. 79, 2496.

    Google Scholar 

  • Onsager, L. 1949.Ann. New York Acad. Sci. 51, 627–659.

    Google Scholar 

  • Park, J. W.; Chakrabarti, B. 1978.Biopolymers 17, 1323–1333.

    Google Scholar 

  • Parsegian, V. A. 1967.J. Theoret. Biol. 15, 70–74.

    Google Scholar 

  • Parsegian, V. A. 1972.J. Chem. Phys. 56, 4393–4396.

    Google Scholar 

  • Parsegian, V. A. 1973.Ann. Rev. Biophys. Bioeng. 2, 221–255.

    Google Scholar 

  • Parsegian, V. A.; Brenner, S. L. 1976.Nature 259, 632–635.

    Google Scholar 

  • Parsegian, V. A.; Ninham, B. W. 1970.Biophys. J. 10, 664–674.

    Google Scholar 

  • Preston, B. N.; Davies, M.; Ogston, A. G. 1965.Biochem. J. 96, 449–474.

    Google Scholar 

  • Ross, P. D.; Minton, A. P. 1977.J. Mol. Biol. 112, 437.

    Google Scholar 

  • Rytov, S. M. 1953.Theory of Electrical Fluctuations and Thermal Radiaion, USSR: Publishing House, Academy of Sciences.

    Google Scholar 

  • Scatchard, G. 1946.J. Am. Chem. Soc. 68, 2315–2319.

    Google Scholar 

  • Slater, J. C. 1933.J. Chem. Phys. 1, 687–691.

    Google Scholar 

  • Stillinger, F. H.; Buff, F. P. 1962.J. Chem. Phys. 37, 1–12.

    Google Scholar 

  • Tanford, C. 1961.Physical Chemistry of Macromolecules, New York: Wiley, pp. 562–3.

    Google Scholar 

  • Timasheff, S. N.; Kronman, M. J. 1959.Arch. Biochem. Biophys. 83, 60–75.

    Google Scholar 

  • Tombs, M. P.; Peacocke, A. R. 1974.The Osmotic Pressure of Biological Macromolecules, New York: Oxford.

  • van der Waals, J. H. 1873. Ph. D. thesis, University of Leiden.

  • van't Hoff, J. H. 1888.Phil. Mag. 26, 81–105.

    Google Scholar 

  • Verwey, E. J.; Overbeek, J. Th. G. 1948.Theory of Stability of Lyophobic Colloids, New York: Elsevier.

    Google Scholar 

  • Wang, S. C. 1927.Phys. Z. 28, 663–666.

    Google Scholar 

  • Wills, P. R.; Nichol, L. W.; Siezen, R. J. 1980.Biophys. Chem. 11, 71–82.

    Google Scholar 

  • Yamakawa, H. 1971.Modern Theory of Polymer Solutions, New York: Harper and Row.

    Google Scholar 

  • Zwanzig, R. 1963.J. Chem. Phys. 39, 2251–2258.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barrett, T.W. pH control of the third virial coefficient of hyaluronate solutions calculated from van der Waals forces by means of the Lifshitz-McLachlan susceptibility theory. J Biol Phys 14, 57–69 (1986). https://doi.org/10.1007/BF01858694

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01858694

Keywords

Navigation