Graphs and Combinatorics

, Volume 12, Issue 4, pp 385–395 | Cite as

Hamiltonian cycles in 1-tough graphs

  • Bing Wei


For a graph G, let σ 3 = min{ i=1 3 d(u i ): {u 1, u 2, u 3} is an independent set of G} and \(\bar \sigma _3 = \min \left\{ {\sum\nolimits_{i = 1}^3 {d\left( {u_i } \right) - \left| {\bigcap\nolimits_{i = 1}^3 {N\left( {u_i } \right)} } \right|:} } \right.\left\{ {u_1 ,u_2 ,u_3 } \right\}\) is an independent set of G}. In this paper, we shall prove the following result: Let G be a 1-tough graph with n vertices such that σ 3 ≥ n and \(\bar \sigma _3 \geqslant n - 4\). ThenG is hamiltonian. This generalizes a result of Fassbender [2], a result of Flandrin, Jung and Li [3] and a result of Jung [5].


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bauer, D., Morgana, A., Schmeichel, E.F. and Veldman, H.J.: Long Cycles in Graphs with Large Degree sums. Discrete Math.79, 57–70 (1989/90)MathSciNetGoogle Scholar
  2. 2.
    Fassbender, B.: A Sufficient Condition on Degree Sums of Independent Triples for Hamiltonian Cycles in 1-Tough Graphs. Ars Combinatoria (to be published)Google Scholar
  3. 3.
    Flandrin, E., Jung, H.A. and Li, H.: Hamiltonism, Degree Sum and Neighborhood Intersections. Discrete Math.90, 41–52 (1991)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Jackson, B.: Hamilton Cycles in Regular 2-Connected Graphs. J. Comb. Theory, Ser B29, 27–46 (1980)CrossRefMATHGoogle Scholar
  5. 5.
    Jung, H.A.: On Maximal Circuits in Finite Graphs. Ann. of Discrete Math.3, 129–144 (1978)CrossRefMATHGoogle Scholar
  6. 6.
    Jung, H.A., Shwe Kyaw and Wei, B.: Almost-Hamiltonian Graphs. Contemporary Methods in Graph Theory, (eds. R. Bodendiek) B.I. Wissenschaftsverlag, 409–428 (1990)Google Scholar
  7. 7.
    Wei, B.: A Generalization of a Result of Bauer and Scheichel. Graphs and Comb.9, 383–389 (1993)CrossRefMATHGoogle Scholar
  8. 8.
    Woodall, D.R.: The Binding Number of a Graph and Its Anderson Number. J. Comb. Theory, Ser B15, 225–255 (1973)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Bing Wei
    • 1
  1. 1.Institute of Systems ScienceAcademia SinicaBeijingChina

Personalised recommendations