Advertisement

International Journal of Stress Management

, Volume 1, Issue 3, pp 249–263 | Cite as

Involvement of reactive oxygen species in emotional stress: A hypothesis based on the immobilization stress-induced oxidative damage and antioxidant defense changes in rat brain, and the effect of antioxidant treatment with reduced glutathione

  • Jiankang Liu
  • Akitane Mori
Article

Abstract

We examined the oxidative damage and antioxidant defense changes with immobilization-induced emotional stress in the rat brain. Though superoxide dismutase activity remained unchanged, brain peroxidation was significantly accelerated by the immobilization stress. Membrane fluidity study with spin labeling in brain cortical membrane showed that immobilization stress induced an increase in microviscosity of membrane layer near the surface and in the ordering of membrane proteins but a decrease in microviscosity at the core of the membrane bilayer. The Na, K-ATPase activity decreased whereas the levels of some monoamines and their metabolites increased along with their metabolic rate. The administration of reduced glutathione showed a protective effect on the immobilization stress-induced stomach bleeding, oxidative damage and abnormal changes in the brain antioxidant defenses. Based on these results and on previous reports, we hypothesize that immobilization stress may induce the formation of reactive oxygen species which weakens the brain antioxidant defenses and induces oxidative damage. The antioxidant administration of reduced glutathione provides further evidence to support the above hypothesis, and also may provide clues in the search for a rational therapy to emotional stress. A possible correlation of emotional stress to aging is also discussed.

Key words

immobilization stress oxidative damage brain antioxidant defense reactive oxygen species free radicals reduced glutathione 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ames, B. N., Cathcart, R., Schwiers, E., & Hochstein, P. (1981). Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: A hypothesis.Proceedings of National Academy of Sciences of the United States of America, 78, 6858–6862.Google Scholar
  2. Ames, B. N., Shigenaga, M. K., & Hagen, T. M. (1993). Oxidants, antioxidants, and the degenerative diseases of aging.Proceedings of the National Academy of Sciences of the United States of America, 90, 7915–7923.PubMedGoogle Scholar
  3. Bohus, B., Koolhaas, J. M., Korte, S. M., Bouws, G. A., Eisenga, W., & Smit, J. (1990). Behavioral physiology of serotonergic and steroid-like anxiolytics as antistress drugs.Neuroscience and Biobehavioral Reviews, 14, 529–534.PubMedGoogle Scholar
  4. Bonting, S. L., Simmon, K. A., & Hawkins, N. M. (1961). Studies on sodium-potassium-activated adenosine triphosphatase.Archives of Biochemistry and Biophysics, 95, 416–423.PubMedGoogle Scholar
  5. Bruch, R. C., & Thayer, W. S. (1983). Differential effect of lipid peroxidation on membrane fluidity as determined by electron spin resonance probes.Biochimica et Biophysica Acta, 733, 216–222.PubMedGoogle Scholar
  6. Burton, G. N., & Ingold, K. U. (1989). Vitamin E as anin vitro andin vivo antioxidant.Annals New York Academy of Sciences, 570, 7–22.Google Scholar
  7. Butterfield, D. A., Roses, A. D., Appel, S. H., & Chesnut, D. B. (1976). Electron spin resonance studies of membrane proteins in erythrocytesin myotonic dystrophy.Archives of Biochemistry and Biophysics, 177, 226–234.PubMedGoogle Scholar
  8. Butterner, G. R. (1993). The pecking order of free radicals and antioxidants: Lipid peroxidation, alpha-tocopherol and ascorbate.Archives of Biochemistry and Biophysics, 300, 535–543.PubMedGoogle Scholar
  9. Clark, J. B., & Nicklas, W. J. (1970). The metabolism of rat brain mitochondria: Preparation and characterization.Journal of Biological Chemistry, 245, 4724–4731.PubMedGoogle Scholar
  10. Cutler, R. G. (1991). Antioxidants and aging.American Journal of Nutrition, 53, 375S-379S.Google Scholar
  11. Ding, Y. A., Han, C. L., Chou, T. C., Lai, W. Y., & Shiao, M. F. (1992). Effects of the calcium antagonist isradipine on 24-hour ambulatory blood pressure, platelet aggregation, and neutrophil oxygen free radicals in hypertension.Journal of Cardiovascular Pharmacology, 19(Suppl. 3). S32-S37.PubMedGoogle Scholar
  12. Emerit, I., & Chance, B. (1992).Free radicals and aging. Switzerland: Birlhauser Verlag Basel.Google Scholar
  13. Glowinski, J., & Iversen, L. (1966). Regional studies of catecholamine in the rat brain.Journal of Neurochemistry, 13, 655–669.PubMedGoogle Scholar
  14. Gohil, K., Viguie, C., Stanley, W. C., Brooks, G. A., & Packer, L. (1988). Blood glutathione oxidation during human exercise.Journal of Applied Physiology, 64, 115–119.PubMedGoogle Scholar
  15. Gue, M., Alary, C., Rio-Lacheze, C. D., Junien, J. L., & Bueno, L. (1993). Comparative involvement of 5-HT1, 5-HT2, and 5-HT3 receptors in stress-induced colonic motor alterations in rats.European Journal of Pharmacology, 233, 193–199.PubMedGoogle Scholar
  16. Guliaeva, N. V., Levshina, I. P., Obidin, A. B., Avalian, A. K., & Kozlov, A. V. (1988). Superoxide elimination activity and the transferrin-ceruloplasmin antioxidant system in blood serum in chronic emotional-pain stress and the administration of dimethyl sulfoxide in rats.Biulleten Eksperimentalnoi Biologii Meditsiny, 106, 159–160.Google Scholar
  17. Gutteridge, J. M. C., (1982). Free radical damage to lipids, amino acids, carbohydrates and nucleic acids determined by thiobarbituric acid reactivity.International Journal of Biochemistry, 14, 649–653.PubMedGoogle Scholar
  18. Gutteridge, J. M. C., & Halliwell, B. (1990). Reoxygenation injury and antioxidant protection: a tale of two paradoxes.Archives of Biochemistry and Biophysics, 283, 223–226.PubMedGoogle Scholar
  19. Halliwell, B. (1989). Oxidants and the central nervous system: Some fundamental questions.Acta Neurologica Scandinavica, 126, 23–33.Google Scholar
  20. Halliwell, B., & Gutteridge, J. M. C. (1985).Free radicals in biology and medicine. Oxford: Clarendon Press.Google Scholar
  21. Harman, G. (1981). The aging process.Proceedings of the National Academy of Sciences of the United States of America, 78, 7142–7128.Google Scholar
  22. Hiramatsu, M., Kohno, M., Edamatsu, R., Mitsuta, K., & Mori, A. (1992). Increased superoxide dismutase activity in aged human cerebrospinal fluid and rat brain determined by electron spin resonance spectrometry using the spin trap method.Journal of Neurochemistry, 58, 1160–1164.PubMedGoogle Scholar
  23. Hissin, P. J., & Hilf, R. (1976). A fluorometric method for determination of oxidized and reduced glutathione in tissues.Analytical Biochemistry, 74, 214–226.PubMedGoogle Scholar
  24. Jorgensen, P. L. (1982). Mechanism of the Na+-K+ pump: Protein structure and conformations of the pure (Na+-K+)ATPase.Biochimica et Biophysica Acta, 694, 27–68.PubMedGoogle Scholar
  25. Julien, C., Sacquet, J., Kandza, P., Su, D. F., Vincent, M., and Barres, C. (1992). Cardiovascular habituation to emotional stress in Lyon hypertensive rats.Clinical and Experimental Pharmacology and Physiology, 19, 187–192.PubMedGoogle Scholar
  26. Kabuto, H., Yokoi, I., Mizukawa, K., & Mori, A. (1989). Effects of an N-methyl-D-aspartate receptor agonist and its antagonist CPP on the levels of dopamine and serotonin metabolites in rat striatum collectedin vivo by using a brain dialysis technique.Neurochemical Research, 14, 1075–1080.PubMedGoogle Scholar
  27. Kabuto, H., Yokoi, I., & Mori, A. (1992). Monoamine metabolites, iron induced seizures, and the anticonvulsant effect of tannins.Neurochemical Research, 17, 585–590.PubMedGoogle Scholar
  28. Kjeldsen, S. E., Rostrup, M., Moan, A., Jundal, H. H., Gjesdal, K., & Eide, I. K. (1992). The sympathetic nervous system may modulate the metabolic cardiovascular syndrome in essential hypertension.Journal of Cardiovascular Pharmacology, 20(Suppl.), S32-S39.Google Scholar
  29. Kukreja, R. C., Weaver, A. B., & Hess, M. L. (1990). Sarcolemmal Na+-K+-ATPase: Inactivation by neutrophil-derived free radicals and oxidants.American Journal Physiology, 259, H1330-H1336.Google Scholar
  30. Lapsha, V. I., & Bocharova, V. N. (1990). A cytophotometric study of the monoamines and energy metabolism enzymes in the neurons of the paravertebral ganglia under old-induced and emotional stress.Neirofiziologiia 22, 771–779.PubMedGoogle Scholar
  31. Levshina, I. P., Kurochkina, E. V., Obidin, A. B., & Guliaeva, N. V. (1988). Alpha-tocopherol in a complex with dimethyl sulfoxide—an agent possessing highly effective adaptogenic action in chronic emotional-pain stress in rats.Zhurnal Vysshei Nervnoi Deiatelnosti Imeni I. P. Pavlova, 38, 533–539.PubMedGoogle Scholar
  32. Libe, M. L., Brusovanik, V. I., Levshina, I. P., Guliaeva, N. V., & Erin, A. N. (1991). Protection of beta-adrenoreceptors of the rat brain during emotional-pain stress by oxidants of the steric hindrance class of phenols.Biulleten Eksperimentalnoi Biologii Meditsiny, 112, 11–12.Google Scholar
  33. Liu, J., & Mori, A. (1992). Pretreatment with tenma and chotoko extracts on striatal monoamines and lipid peroxides in iron-induced acute epileptic rats.Journal of Medical and Pharmaceutical Society of Wakan-yaku, 9, 202–208.Google Scholar
  34. Liu, J., & Mori, A. (1993a). Monoamine metabolism provides an antioxidant defense in the brain against oxidant- and free radical-induced damage.Archives of Biochemistry and Biophysics, 302, 118–127.PubMedGoogle Scholar
  35. Liu, J., & Mori, A. (1993b). Age-associated changes in superoxide dismutase activity, thiobarbituric acid reactivity and reduced glutathione level in the brain and liver in senescence accelerated mice (SAM): A comparison with ddY mice.Mechanisms of Aging and Development, 71, 23–30.Google Scholar
  36. Liu, J., Wang, X., & Mori, A. (1994). Immobilization stress-induced antioxidant defense changes in rat plasma: Effect of treatment with reduced glutathione.International Journal of Biochemistry, 26, 511–517.PubMedGoogle Scholar
  37. Maslova, L. N., Markel, A. L., & Naumenko, E. V. (1991). Treatment with L-dopa in early life restored pituitary-adrenocortical response to emotional stress in adult rats with inherited arterial hypertension.Brain Research, 546, 55–60.PubMedGoogle Scholar
  38. Milne, L., Nicotera, P., Orrenius, S., & Burkitt, M. J. (1993). Effects of glutathione and chelating agents on copper-mediated DNA oxidation: Pro-oxidant and antioxidant properties of glutathione.Archives of Biochemistry and Biophysics, 304, 102–109.PubMedGoogle Scholar
  39. Mori, A., Liu, J., Wang, X., & Kawai, M. (1993). Free radical scavenging by brain homogenate: Implication to free radical damage and antioxidant defense in brain.Neurochemistry International (in press).Google Scholar
  40. Munday, R., & Winterbour, C. C. (1989). Reduced glutathione in combination with superoxide dismutase as an important biological antioxidant defense mechanism.Biochemical Pharmacology, 38, 4349–4352.PubMedGoogle Scholar
  41. Nagy, K., Simon, P., & Zs-Nagy, I. (1983). Spin label studies on synaptosomal membranes of rat brain cortex during aging.Biochemical and Biophysical Research Communication, 117, 688–694.Google Scholar
  42. Naumenko, E. V., Maslova, L. N., & Markel, A. L. (1990). Correction of arterial blood pressure in adult rats with inherited stress-induced arterial hypertension by enhancement of catecholamine metabolism in early postnatal period.Endocrinologia Experimentalis, 24, 241–248.PubMedGoogle Scholar
  43. Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction.Analytical Biochemistry, 95, 351–358.PubMedGoogle Scholar
  44. Roth, R. H., Tam, S.-Y., Yoshishige, I., Yang, J.-X., & Deutch, A. Y. (1988). Stress and the mesocorticolimbic dopamine systems.Annals New York Academy of Sciences, 537, 138–143.Google Scholar
  45. Sagar, S., Kallo, I. J., Kaul, N., Ganguly, N. K., & Sharma, B. K. (1992). Oxygen free radicals in essential hypertension.Molecular and Cellular Biochemistry, 111, 103–108.PubMedGoogle Scholar
  46. Seredenin, S. B., Badyshtov, B. A., & Egorov, D. I. (1989). Contents of lipid peroxidation products in inbred mice with different types of emotional stress reaction.Biulleten Eksperimentalnoi Biologii Meditsiny, 108, 46–48.Google Scholar
  47. Sosnovsky, A. S., & Kozlov, A. V. (1992). Increased concentration of thiobarbituric acid-reactive material in the hypothalamus of rats subjected to a 1 hour emotional stress.Biulleten Eksperimentalnoi Biologii Meditsiny, 113, 486–488.Google Scholar
  48. Sosnovsky, A. S., Tsvetskova, M. A., & Uzunova, P. I. (1992). Lipid peroxidation in rats under emotional stress: Correlation with open field behavior.Biulleten Eksperimentalnoi Biologii Meditsiny, 113, 25–27.Google Scholar
  49. Sosnovskii, A. S., Tsvetkova, M. A., Uzunova, P. I., Gelbova, T. D., Peneva, V. I., Sokolova, T., Ribarov, S. R., & Nikolov, N. A. (1992). Lipid peroxidation in emotional stress in rats: Correlation with parameters of open field behavior.Biulleten Eksperimentalnoi Biologii Meditsiny, 113, 19–21.Google Scholar
  50. Szabo, M. E., Droy-Lefaix, M. T., & Doly, M. (1992). Modification of reperfusion-induced ionic imbalance by free radical scavengers in spontaneously hypertensive rat retina.Free Radical Biology and Medicine, 13, 609–620.PubMedGoogle Scholar
  51. Weininger, O. (1956). The effects of early experience on behavior and growth characteristics.Journal of Comprehensive Physiological Psychology, 49, 1–9.Google Scholar
  52. Wiechelman, K., Braun, R., & Fitzpatrick, J. (1988). Investigation of the bicinchoninic acid protein assay: Identification of the groups responsible for color formation.Analytical Biochemistry, 175, 231–237.PubMedGoogle Scholar
  53. Zelaska, M. M., Nagy, K., & Floyd, R. A. (1989). Iron-induced lipid peroxidation and inhibition of dopamine synthesis in striatum synaptosomes.Neurochemical Research, 14, 597–605.PubMedGoogle Scholar

Copyright information

© Human Sciences Press, Inc. 1994

Authors and Affiliations

  • Jiankang Liu
    • 1
  • Akitane Mori
    • 1
  1. 1.Department of Neuroscience, Institute of Molecular and Cellular MedicineOkayama University Medical SchoolOkayamaJapan

Personalised recommendations