Skip to main content
Log in

Magnetic resonance Raman activity: Inverse Faraday effect in hemoglobin

  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

A complete polarization study of human oxy- and carbonmonoxyhemoglobin (carbonylhemoglobin) A and S is reported for backscattered light in the resonance Raman light-scattering situation with excitations in the long-wavelength region, λ=5682 Å and 5815 Å, and in the short-wavelength region, λ=4579 Å and 4880 Å, as comparison. All four polarization components of the scattered light with respect to the two conditions of linear and circular polarization of the incident light were measured. These were: (1) parallel; (2) perpendicular; (3) corotating; and (4) contrarotating.

This method has been used to characterize the three invariants of the nonsymmetric Raman tensor for randomly oriented molecules. These invariants are based on a model in which the scattered light is dependent on only an induced electric dipole. With no higher moments involved in the scattering process, the amplitude of any band measured under the four conditions should satisfy the relation: (1)+(2)=(3)+(4).

The experiments reported here demonstrate that although this relation is satisfied for short-wavelength (4579 Å and 4880 Å) excitation, it does not apply for long-wavelength (5682 Å and 5815 Å) excitation, for which (1)+(2)<(3)+(4) holds.

There are larged-d metal-electron influences on the long, but not the short, wavelength absorption region of hemoproteins. A large metal-electron magnetic dipole moment can thus be induced with circularly polarized light of long wavelength, owing to the availability of a transition involving charge transfer interaction coupling between metal orbitals and the porphyrin π* orbitals.

The increase in light scattering is due to aninverse Faraday effect, resulting in magnetic resonance Raman activity. Owing to large crystal field influences and Jahn-Teller instability, the critical zero-field splitting energy is also large. The incident circularly polarized radiation at λ=5700 Å (ω=17,544 cm−1) is approximately the critical cubic splitting parameter, △ C , the calculated value for which is 18,500 cm−1. This incident light equalizes or mixes the energy levels of the1 A 1 and5 T 2 states; i.e., it populates magnetic substates. An induced electric dipole-magnetic dipole transition, besides an induced electric dipole transition, is then permitted for circularly polarized light at the Larmor precession frequency, but not permitted for linearly polarized light, as thed-d metal transition is electric dipole disallowed.

The hemoglobin S solution and gel scatter longwavelength light in a similar fashion; i.e., a large induced magnetic dipole moment is implicated for the circularly polarized conditions. In addition, there are bands at 750 and 1050 cm−1 for the hemoglobin S gel not present in dissolved hemoglobin S nor in hemoglobin A. The presence of these bands is attributed to changes in theB 1g mode of porphyrin ring vibrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abragam, A; Bleaney, B. 1970.Electron Paramagnetic Resonance of Transition Ions; Clarendon Press, Oxford.

    Google Scholar 

  • Adar, F. 1978. InThe Porphyrins, Physical Chemistry, Part A; Dolphin, D., Ed.; Academic, New York, pp. 167–209.

    Google Scholar 

  • Allen, D. W.; Wyman, J. 1954.Rev. Hematol. 9, 155.

    Google Scholar 

  • Applequist, J. 1973a.J. Chem. Phys. 58, 4251.

    Article  Google Scholar 

  • Applequist, J. 1973b.J. Am. Chem. Soc. 95, 8255.

    Article  Google Scholar 

  • Applequist, J. 1973c.J. Am. Chem. Soc. 95, 8258.

    Article  Google Scholar 

  • Applequist, J. 1977.Acc. Chem. Res. 10, 79.

    Article  Google Scholar 

  • Applequist, J. 1979a.J. Chem. Phys. 71, 1983.

    Article  Google Scholar 

  • Applequist, J. 1979b.J. Chem. Phys. 71, 4324.

    Article  Google Scholar 

  • Applequist, J. 1979c.J. Chem. Phys. 71, 4332.

    Article  Google Scholar 

  • Applequist, J; Carl, R.; Fung, K. K.; 1972.J. Am. Chem. Soc. 94, 2952.

    Article  Google Scholar 

  • Applequist, J; Rivers, P.; Applequist, D. E. 1969.J. Am. Chem. Soc. 91, 5705.

    Article  Google Scholar 

  • Applequist, J.; Sunberg, K. R.; Olson, M. L.; Weiss, L. C. 1979.J. Chem. Phys. 70, 1240.

    Article  Google Scholar 

  • Atkins, P. W.; Barron, L. D. 1968a.Proc. Roy. Soc. A304, 303.

    Google Scholar 

  • Atkins, P. W.; Barron, L. D. 1968b.Proc. Roy. Soc. A306, 119.

    Google Scholar 

  • Atkins, P. W.; Barron, L. D. 1969.Mol. Phys. 16, 453.

    Google Scholar 

  • Atkins, P. W.; Barron, L. D. 1970a.Mol. Phys. 18, 721.

    Google Scholar 

  • Atkins, P. W.; Barron, L. D. 1970b.Mol. Phys. 18, 724.

    Google Scholar 

  • Atkins, P. W.; Miller, M. H. 1968a.Mol. Phys. 15, 491.

    Google Scholar 

  • Atkins, P. W.; Miller, M. H. 1968b.Mol. Phys. 15, 503.

    Google Scholar 

  • Atkins, P. W.; Wooley, R. G. 1970.Proc. Roy. Soc. (London)A319, 549.

    Google Scholar 

  • Bacci, M. 1980.Biophys. Chem. 11, 39.

    Article  Google Scholar 

  • Ballhausen, M. 1962.Introduction to Ligand Field Theory; McGraw-Hill, New York.

    Google Scholar 

  • Ballhausen, C. J.; Hansen, A. E. 1972.Ann. Rev. Phys. Chem. 23, 15.

    Article  Google Scholar 

  • Barrett, T. W. 1979.J. Raman Spectrom. 8, 122.

    Article  Google Scholar 

  • Barrett, T. W. 1981.Chem. Phys. Lett. 78, 125.

    Article  Google Scholar 

  • Barrett, T. W. 1982a.J. Chem. Soc., Chem. Commun. 9.

  • Barrett, T. W. 1982b.Phys. Lett. 91A, 139.

    Article  Google Scholar 

  • Barrett, T. W. 1982c.Phys. Lett. 92A, 309.

    Article  Google Scholar 

  • Barrett, T. W. 1983.Magnetically Induced Laser. Navy Case 66,394, Patent Office, Naval Research Laboratory, Washington, DC 20375.

    Google Scholar 

  • Barrett, T. W. 1985.Naval Air Development Center Report No. NADC-85074-60.

  • Barron, L. D. 1975a.Nature 255, 458.

    Google Scholar 

  • Barron, L. D. 1975b.Nature 257, 372.

    Google Scholar 

  • Barron, L. D. 1976. InMolecular Spectroscopy, Vol. 4; Barrow, R. F.; Long, D. A.; Sheriden, J., Eds.; The Chemical Society, London, pp. 96–124.

    Google Scholar 

  • Barron, L. D. 1977a.J. Chem. Soc. (London)Perkin Trans. II, 1074.

  • Barron, L. D. 1977b.J. Chem. Soc. (London)Perkin Trans. II, 1790.

  • Barron, L. D. 1977c.Chem. Phys. Lett. 46, 579.

    Article  Google Scholar 

  • Barron, L. D. 1978a. InAdvances in Infrared and Raman Spectroscopy; Clark, R. J. H.; Hester, R. E., Eds.; Heyden, London; Vol. 4, pp. 271–331.

    Google Scholar 

  • Barron, L. D. 1978b.Tetrahedron 34, 607.

    Article  Google Scholar 

  • Barron, L. D. 1969. InOptical Activity in Chiral Discrimination; Mason, S. F., Ed.; D. Reidel, Boston, MA, pp. 219–262.

    Google Scholar 

  • Barron, L. D. 1980.Acc. Chem. Res. 13, 90.

    Article  Google Scholar 

  • Barron, L. D. 1982.Molecular Light Scattering and Optical Activity; Cambridge U. Press.

  • Barron, L. D.; Bogaard, M. P.; Buckingham, A. D. 1973.J. Am. Chem. Soc. 95, 603.

    Article  Google Scholar 

  • Barron, L. D.; Buckingham, A. D. 1971.Mol. Phys. 20, 1111.

    Google Scholar 

  • Barron, L. D.; Buckingham, A. D. 1972.Mol. Phys. 23, 145.

    Google Scholar 

  • Barron, L. D.; Buckingham, A. D. 1974.J. Am. Chem. Soc. 96, 4769.

    Article  Google Scholar 

  • Barron, L. D.; Buckingham, A. D. 1975.Ann. Rev. Chem. 26, 381.

    Article  Google Scholar 

  • Barron, L. D.; Meehan, C. 1979.Chem. Phys. Lett. 66, 444.

    Article  Google Scholar 

  • Barron, L. D.; Numan, H.; Wynborg, H. 1978.J. Chem. Soc. (London)Chem. Commun., 259.

  • Barth, G.; Linder, R. E.; Bunnenberg, E.; Djerassi, C.; Seaman, L.; Moscowitz, A. 1974.J. Chem. Soc., Perkin Trans. II, 696.

    Google Scholar 

  • Becquerel, J. 1929.Z. Phys. 58, 205.

    Article  Google Scholar 

  • Bethe, H. 1929.Ann. Phys. 3, 133.

    Google Scholar 

  • Bethe, H. 1930.Z. Phys. 60, 218.

    Article  Google Scholar 

  • Bleaney, B.; Stevens, K. W. H. 1953.Rep. Progr. Phys. 16, 108.

    Article  Google Scholar 

  • Bowers, K. D.; Owen, J. 1955.Rep. Progr. Phys. 18, 304.

    Article  Google Scholar 

  • Brackett, G. C.; Richards, P. L.; Caughey, W. S.; Wickman, H. H. 1971.J. Chem. Phys. 54, 4383.

    Article  Google Scholar 

  • Briegleb, G; Kuball, H. G.; Henschel, K.; Euing, W. 1972.Ber. Bunsengesellschaft Phys. Chem. 76, 101.

    Google Scholar 

  • Brini, M.; Bolard, J. 1972.Compt. Rend. Hebd. Séances Acad. Sci. 274, 1422.

    Google Scholar 

  • Bromberg, P. A.; Jensen, W. M. 1967.J. Lab. Clin. Med. 70, 480.

    Google Scholar 

  • Buchler, J. W.; Kokish, W.; Smith, P. D. 1978.Struct. Bonding 34, 79.

    Google Scholar 

  • Buckingham, A. D. 1967.Adv. CHem. Phys. 12, 107.

    Google Scholar 

  • Buckingham, A. D. 1969.Symp. Faraday Soc. 3, 7–13.

    Article  Google Scholar 

  • Buckingham, A. D.; Raab, R. E. 1975.Proc. Roy. Soc. (London)A345, 365.

    Google Scholar 

  • Buckingham, A. D.; Stiles, P. J. 1974.Acc. Chem. Res. 7, 258.

    Article  Google Scholar 

  • Bunn, H. F. 1972. InHemoglobin and Red Cell Structure and Function; Brewer, G., Ed.; Plenum, New York, pp. 41–65.

    Google Scholar 

  • Canters, G. W.; Van der Waals, J. H. 1978. InThe Porphyrins, Vol. 3, Physical Chemistry, Part A; Dolphin, D., Ed.; Academic, New York, pp. 531–82.

    Google Scholar 

  • Canters, G. W.; Van Egmond, J.; Schaafsma, T. J.; Chan, I. Y.; van Dorp, W. G.; Van der Waals, J. H. 1973.Ann. N.Y. Acad. Sci. 206, 711.

    Google Scholar 

  • Canters, G. W.; Van Egmond, T.; Schaafsma, T. J.; Van der Waals, J. H. 1972.Mol. Phys. 24, 1203.

    Google Scholar 

  • Cerdonio, M.; Congiu-Castellano, A.; Calabrese, L.; Morante, S.; Pispisa, B.; Vitale, S. 1978.Proc. Nat. Acad. Sci. USA 75, 9916.

    Google Scholar 

  • Cerdonio, M.; Congiu-Castellano, A.; Mongo, F.; Pispisa, B.; Romani, G. L.; Vitale, S. 1977.Proc. Nat. Acad. Sci. USA 74, 398.

    Google Scholar 

  • Chan, I. Y.; van Dorp, W. G.; Schaafsma, T. J.; Van der Waals, J. H. 1971a.Mol. Phys. 22, 741.

    Google Scholar 

  • Chan, I. Y.; van Dorp, W. G.; Schaafsma, T. J.; Van der Waals, J. H. 1971b.Mol. Phys. 22, 753.

    Google Scholar 

  • Cheng, J.C.; Osborne, G. A.; Stephens, P. J.; Eaton, W.A. 1973.Nature 241, 193.

    Google Scholar 

  • Child, M. S. 1960.Mol. Phys. 3, 601.

    Google Scholar 

  • Child, M. S.; Longuet-Higgins, H. C. 1961.Phil. Trans. Roy. Soc. (London)A254, 259.

    Google Scholar 

  • Chiu, Y-N. 1969.J. Chem. Phys. 50, 5336.

    Article  Google Scholar 

  • Chiu, Y-N. 1970.J. Chem. Phys. 52, 3641.

    Article  Google Scholar 

  • Clark, R. J. H.; Turtle, P. C. 1976.J. Chem. Soc., Faraday Trans. II 72, 1885.

    Google Scholar 

  • Condon, E. U.; Altar, W.; Eyring, H. 1937.J. Chem. Phys. 5, 753.

    Article  Google Scholar 

  • Darwin, C. G. 1926.Proc. Roy. Soc. (London)A112, 314.

    Google Scholar 

  • Darwin, C. G.; Watson, W. H. 1927.Proc. Roy. Soc. (London)A114, 474.

    Google Scholar 

  • Day, P.; Scregg, G.; Williams, R. J. P. 1964.Biopolymers Symp., Vol. 1, 271.

    Google Scholar 

  • Drago, R. S.; Corden, B. B. 1980.Acc. Chem. Res. 13, 353.

    Article  Google Scholar 

  • Dratz, E. A. 1966. Ph. D. dissertation, University of California, Berkeley.

  • Eimeis, C. A.; Oosterhoff, L. J.; DeVries, O. 1967.Proc. Roy. Soc. (London)297, 54.

    Google Scholar 

  • Ellett, A. 1930.Phys. Rev. 35, 588.

    Article  Google Scholar 

  • Fiutak, J. 1963.Can. J. Phys. 41, 12.

    Google Scholar 

  • Göppert-Mayer, M. 1931.Ann. Phys. 9, 273.

    Google Scholar 

  • Gouterman, M. 1959.J. Chem. Phys. 30, 1139.

    Article  Google Scholar 

  • Gouterman, M. 1961.J. Mol. Spectrosc. 6, 138.

    Article  Google Scholar 

  • Gouterman, M. 1973.Ann. N.Y. Acad. Sci. 206, 70.

    Google Scholar 

  • Gouterman, M.; Yamanashi, B. S.; Kwiram, A. L. 1972.J. Chem. Phys. 56, 4073.

    Article  Google Scholar 

  • Griffith, J. S. 1961.The Theory of Transition Metal Ions; Cambridge Univ. Press.

  • Groenewege, M. P. 1962.Mol. Phys. 5, 541.

    Google Scholar 

  • Ham, F. S. 1965.Phys. Rev. A138, 1727.

    Article  Google Scholar 

  • Ham, F. S. 1968.Phys. Rev. 166, 307.

    Article  Google Scholar 

  • Ham, F. S. 1969.Jahn-Teller Effects in Electron Paramagnetic Resonance Spectroscopy, Electron Paramagnetic Resonance; Plenum, New York.

    Google Scholar 

  • Hamaguchi, H. 1977.J. Chem. Phys. 66, 5757.

    Article  Google Scholar 

  • Hamaguchi, H.; Harada, I.; Shimanouchi, T. 1975.Chem. Phys. Lett. 32, 103.

    Article  Google Scholar 

  • Hamaguchi, H.; Shimanouchi, T. 1976.Chem. Phys. Lett. 38, 370.

    Article  Google Scholar 

  • Harris, R. A.; McClain, W. H. 1977a.J. Chem. Phys. 67, 265.

    Article  Google Scholar 

  • Harris, R. A.; McClain, W. M. 1977a.J. Chem. Phys. 67, 265.

    Article  Google Scholar 

  • Harris, R. A.; McClain, W. M. 1977b.J. Chem. Phys. 67, 269.

    Article  Google Scholar 

  • Harris, R. A.; McClain, W. M. 1977c.J. Chem. Phys. 67, 271.

    Article  Google Scholar 

  • Harris, R. A.; McClain, W. M.; Sloane, C. F. 1974.Mol. Phys. 28, 381.

    Google Scholar 

  • Hatano, M.; Nozawa, T. 1978.Adv. Biophys. 11, 95.

    Google Scholar 

  • Heisenberg, W. 1925.Z. Phys. 31, 617.

    Google Scholar 

  • Herzfeldt, K. F.; Goeppert-Mayer, M. 1936.Phys. Rev. 49, 332.

    Article  Google Scholar 

  • Hochstrasser, R. M.; Nyi, C. A. 1979.J. Chem. Phys. 70, 1112.

    Article  Google Scholar 

  • Hoffman, B. M.; Ratner, M. A. 1978.Mol. Phys. 35, 901.

    Google Scholar 

  • Hong, H. K. 1977a.J. Chem. Phys. 67, 801.

    Article  Google Scholar 

  • Hong, H. K. 1977b.J. Chem. Phys. 67, 813.

    Google Scholar 

  • Hong, H. K. 1978.J. Chem. Phys. 68, 1253.

    Article  Google Scholar 

  • Hougen, J. T. 1960.J. Chem. Phys. 32, 1122.

    Google Scholar 

  • Hougen, J. T. 1964.J. Mol. Spectrosc. 13, 149.

    Google Scholar 

  • Hug, W.; Kint, S.; Bailey, G. F.; Scherer, J. R. 1975.J. Am. Chem. Soc. 97, 5589.

    Google Scholar 

  • Jenkins, F. R.; White, H. E. 1976.Fundamentals of Optics, 4th ed.; McGraw-Hill, New York, pp. 584–86.

    Google Scholar 

  • Kamimura, H.; Mizuhashi, S. 1968.J. Appl. Phys. 39, 684.

    Google Scholar 

  • Kiefer, W. 1977. InAdvances in Infrared and Raman Spectroscopy; Clark, J. H.; Hester, R. E., Eds.; Heyden, London, Vol. 3, pp. 1–41.

    Google Scholar 

  • Kirkwood, J. G. 1937.J. Chem. Phys. 5, 479.

    Google Scholar 

  • Kirkwood, J. G. 1939.J. Chem. Phys. 7, 139.

    Google Scholar 

  • Kitagawa, T.; Abe, M.; Kyogoku, Y.; Ogoshi, H.; Sugimoto, H.; Yoshida, Z. 1977.Chem. Phys. Lett. 48, 55.

    Google Scholar 

  • Kitagawa, T.; Abe, M.; Kyogoku, Y.; Ogoshi, H.; Watanabe, E.; Yoshida, Z. 1976.J. Phys. Chem. 80, 1181.

    Google Scholar 

  • Kitagawa, T.; Kyogoku, Y.; Iizuka, T.; Saito, M. I.; Yamanaka, T. 1975.J. Biochem. 78, 719.

    Google Scholar 

  • Kotani, M. 1961.Progr. Theor. Phys. (Kyoto)Suppl. 17, 4.

    Google Scholar 

  • Kotani, M. 1974.Adv. Chem. Phys. 7, 159.

    Google Scholar 

  • Kotani, M. 1968.Adv. Chem. Phys. 4, 227.

    Google Scholar 

  • Kwiram, A. L.; Yamanashi, B. S.; Gouterman, M. 1971. Bull. Am. Phys. Soc.16, 832.

    Google Scholar 

  • Larmor, J. 1897.Phil. Mag. 44, 503.

    Google Scholar 

  • Larmor, J. 1899.Proc. Cambridge Phil. Soc. 10, 181.

    Google Scholar 

  • Larmor, J. 1900.Aether and Matter; Cambridge Univ. Press.

  • Long, D. A. 1977.Raman Spectroscopy; McGraw-Hill, New York.

    Google Scholar 

  • Longuet-Higgens, H. C. 1961.Adv. Spectrosc. 2, 429.

    Google Scholar 

  • Lorentz, H. A. 1909.The Theory of Electrons and Its Applications: The Phenomena of Light and Radiant Heat, 2nd ed.; Dover Publications, New York.

    Google Scholar 

  • Macaluso, D.; Corbino, O. M. 1898.Compt. Rend. Hebd. Séances Acad. Sci. 127, 548.

    Google Scholar 

  • Malley, M.; Feher, G.; Mauzerall, D. 1968.J. Mol. Spectrosc. 26, 320.

    Google Scholar 

  • May, A.; Huehns, E. R. 1972.Br. J. Haematol. 22, 599.

    Google Scholar 

  • McClain, W. M. 1971.J. Chem. Phys. 55, 2789.

    Google Scholar 

  • McClain, W. M. 1972.J. Chem. Phys. 57, 2264.

    Google Scholar 

  • Melki, G. 1972.Biochim. Biophys. Acta 263, 226.

    Google Scholar 

  • Mizuhashi, S. 1969.J. Phys. Soc. Jpn. 26, 468.

    Google Scholar 

  • Monson, P. R.; McClain, W. M. 1970.J. Chem. Phys. 53, 29.

    Google Scholar 

  • Monson, P. R.; McClain, W. M. 1972.J. Chem. Phys. 56, 4817.

    Google Scholar 

  • Myer, Y. P.; Pande, A. 1978. InThe Porphyrins, Vol. 3, Physical Chemistry, Part A; Dolphin, D., Ed.; Academic, New York, pp. 271–322.

    Google Scholar 

  • Nafie, L. A.; Diem, A. 1979.Acc. Chem. Res. 12, 296.

    Google Scholar 

  • Nestor, J.; Spiro, T. G. 1973.J. Raman Spectrosc. 1, 539.

    Google Scholar 

  • Orton, J. W. 1959.Rep. Progr. Phys. 22, 204.

    Google Scholar 

  • Partington, J. R. 1953.An Advanced Treatise on Physical Chemistry, Vol. 4, Physico-Chemical Optics; Longmans, London.

    Google Scholar 

  • Pauling, L. 1964.Nature 203, 182.

    PubMed  Google Scholar 

  • Perrin, G. 1942.J. Chem. Phys. 10, 415.

    Google Scholar 

  • Pershan, P. D. 1963.Phys. Rev. 130, 919.

    Google Scholar 

  • Pershan, P. D.; Van der Ziel, J. P.; Malmstrom, L. D. 1966.Phys. Rev. 143, 574.

    Google Scholar 

  • Perutz, M. F. 1980. InChemical Recognition in Biology; Chapeville, F.; Haenni, A.-L., Eds.; Springer Verlag, New York, pp. 38–42.

    Google Scholar 

  • Pézolet, M.; Nafie, L. A.; Peticolas, W. L. 1973.J. Raman Spectrosc. 1, 455.

    Google Scholar 

  • Platt, J. R. 1956. InRadiation Biology, Vol. III; Hollaender, A., Ed.; McGraw-Hill, New York, pp. 71–123.

    Google Scholar 

  • Plazcek, G. 1934. InRayleigh and Raman Scattering (UCRL Trans. No. 526L) fromHandbuch der Radiologie; Marx, E., Ed.; Akademische Verlagsgesellschaft, Leipzig; Vol. VI, 2, 209.

    Google Scholar 

  • Prasad, P. L.; Burow, D. F. 1979a.J. Am. Chem. Soc. 101, 800.

    Article  Google Scholar 

  • Prasad, P. L.; Burow, D. F. 1979b.J. Am. Chem. Soc. 101, 806.

    Article  Google Scholar 

  • Prasad, P. L.; Nafie, L. A. 1979.J. Chem. Phys. 70, 5582.

    Article  Google Scholar 

  • Rossi-Bernardi, L.; Luzanna, M.; Samaja, M. 1975.FEBS Lett. 59, 15.

    Google Scholar 

  • Ruark, A. E.; Urey, H. C. 1930.Atoms, Molecules and Quanta; McGraw-Hill, London.

    Google Scholar 

  • Schellman, J. A. 1968.Acc. Chem. Res. 1, 44.

    Google Scholar 

  • Schooley, D. A.; Bunnenberg, E.; Djerassi, C. 1965.Proc. Nat. Acad. Sci. USA 53, 579.

    Google Scholar 

  • Shatwell, R. A.; McCaffery, A. J. 1973.J. Chem. Soc., Chem. Commun., 546.

  • Shelnutt, J. A.; Cheung, L. D.; Chang, R. C. C.; Yu, N-T.; Felton, R. H. 1977.J. Chem. Phys. 66, 3387.

    Google Scholar 

  • Shelnutt, J. A.; Rousseau, D. L.; Friedman, J. M.; Simon, S. R. 1979.Proc. Nat. Acad. Sci. USA 76, 4409.

    Google Scholar 

  • Shriver, D. F.; Dunn, J. B. R. 1974.Appl. Spectrosc. 28, 319.

    Google Scholar 

  • Simpson, W. T. 1949.J. Chem. Phys. 17, 1218.

    Google Scholar 

  • Smith, D. W.; Williams, R. J. P. 1968.Biochem. J. 110, 297.

    Google Scholar 

  • Smith, D. W.; Williams, R. J. P. 1970.Structure & Bonding 7, 1.

    Google Scholar 

  • Sonnich Mortensen, O.; Hassing, S. 1979. Polarization and Interference Phenomena in Resonance Raman Scattering (unpublished manuscript).

  • Sonnich Mortensen, O.; Koningstein, J. A. 1968.J. Chem. Phys. 48, 3971.

    Google Scholar 

  • Spiro, T. G.; Burke, J. M. 1976.J. Am. Chem. Soc. 98, 5482.

    Google Scholar 

  • Spiro, T. G.; Loehr, T. M. 1975. InAdvances in Infrared and Raman Spectroscopy, Vol. 1; Clark, R. J. H.; Hester, R. E., Eds.; Heyden, London, pp. 98–142.

    Google Scholar 

  • Spiro, T. G.; Stein, P. 1977.Ann. Rev. Phys. Chem. 28, 501.

    Google Scholar 

  • Spiro, T. G.; Stein, P. 1978.Indian J. Pure Appl. Phys. 16, 213.

    Google Scholar 

  • Spiro, T. G.; Strekas, T. C. 1972.Proc. Nat. Acad. Sci. USA 69, 2622.

    Google Scholar 

  • Spiro, T. G.; Strekas, T. C. 1974.J. Am. Chem. Soc. 96, 338.

    Google Scholar 

  • Stein, P.; Brown, J. M.; Spiro, T. G. 1977.Chem. Phys. 25, 237.

    Google Scholar 

  • Stephens, P. J. 1970.J. Chem. Phys. 52, 3489.

    Google Scholar 

  • Stephens, P. J.; Mowery, R. L.; Schatz, P. N. 1971.J. Chem. Phys. 55, 224.

    Google Scholar 

  • Stephens, P. J.; Suëtaak, W.; Schatz, P. N. 1966.J. Chem. Phys. 44, 4592.

    Google Scholar 

  • Sutherland, J. C. 1978. InThe Porphyrins, Vol. 3, Physical Chemistry, Part A; Dolphin, D., Ed.; Academic, New York, pp. 225–270.

    Google Scholar 

  • Sutherland, J. C.; Axelrod, D.; Klein, M. P. 1971.J. Chem. Phys. 54, 2888.

    Google Scholar 

  • Sutherland, J. C.; Klein, M. P. 1972.J. Chem. Phys. 57, 76.

    Google Scholar 

  • Sutherland, J. C.; Vickery, L. W.; Klein, M. P. 1974.Rev. Sci. Instr. 45, 1089.

    Google Scholar 

  • Tanabe, Y.; Sugano, S. 1954.J. Phys. Soc. Jpn. 9, 766.

    Google Scholar 

  • Tang, J.; Albrecht, A. C. 1970. InRaman Spectroscopy, Vol. 2; Szymanski, H. A., Ed.; Plenum, New York, pp. 33–67.

    Google Scholar 

  • Treu, J. I.; Hopfield, J. J. 1975.J. Chem. Phys. 63, 613.

    Google Scholar 

  • Van der Waals, J. H.; van Dorp, W. G.; Schaafsma, T. J. 1979. InThe Porphyrins, Vol. 4, Physical Chemistry, Part B; Dolphin, D., Ed.; Academic, New York, pp. 257–312.

    Google Scholar 

  • Van Vleck, J. H. 1932.Electric and Magnetic Susceptibilities; Oxford Univ. Press.

  • Van Vleck, J. H. 1939.J. Chem. Phys. 7, 72.

    Google Scholar 

  • Volkenstein, M. V. 1977.Molecular Biophysics; Adademic Press, New York.

    Google Scholar 

  • Volkenstein, M. V.; Sharonov, J. A.; Shemelin, A. K. 1966.Nature 209, 709.

    Google Scholar 

  • Volkenstein, M. V.; Sharonov, J. A.; Shemelin, A. K. 1967.Mol. Biol. (Russian)1, 467.

    Google Scholar 

  • Wallace, R. 1966.Mol. Phys. 11, 457.

    Google Scholar 

  • Weiss, J. J. 1964.Nature 202, 83.

    Google Scholar 

  • Weissbluth, M. 1967.Structure & Bonding 2, 1.

    Google Scholar 

  • Weissbluth, M. 1972.J. Theor. Biol. 35, 597.

    Google Scholar 

  • Weissbluth, M. 1974.Hemoglobin: Cooperativity and Electronic Properties; Springer Verlag, New York.

    Google Scholar 

  • Williams, F. I. B.; Krupka, D. C.; Breen, D. R. 1969.Phys. Rev. 179, 255.

    Google Scholar 

  • Wilson, E. B.; Decius J. C.; Cross, P. C. 1955.Molecular Vibrations; McGraw-Hill, New York.

    Google Scholar 

  • Wood, W. W.; Rickett, W.; Kirkwood, J. G. 1952.J. Chem. Phys. 20, 561.

    Google Scholar 

  • Wooley, R. G. 1971.Proc. Roy. Soc. (London)A321, 557.

    Google Scholar 

  • Wooley, R. G. 1975.Adv. Chem. Phys. 33, 153.

    Google Scholar 

  • Yoshida, S.; Iizuka, T.; Nozawa, T.; Hatano, H. 1975.Biochim. Biophys. Acta 405, 122.

    Google Scholar 

  • Zavoisky, E. 1945a.J. Phys. USSR 9, 245.

    Google Scholar 

  • Zavoisky, E. 1945b.J. Phys. USSR 9, 447.

    Google Scholar 

  • Zavoisky, E. 1945c.J. Phys. USSR 10, 170.

    Google Scholar 

  • Zavoisky, E. 1945d.J. Phys. USSR 10, 197.

    Google Scholar 

  • Zerner, M.; Gouterman, M. 1966.Theor. Chim. Acta 4, 44.

    Article  Google Scholar 

  • Zerner, M.; Gouterman, M.; Kobayashi, H. 1966.Theor. Chim. Acta 6, 363.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barrett, T.W. Magnetic resonance Raman activity: Inverse Faraday effect in hemoglobin. J Biol Phys 14, 80–98 (1986). https://doi.org/10.1007/BF01857745

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01857745

Keywords

Navigation