Physics of selective systems: Computation and biology

  • Jerome Rothstein


The statistical thermodynamics of systems displaying selective behavior is used to discuss some important ultimate physical limitations of computers and biological systems. These cluster around communication of information, measurement, and irreversible processes. The most fundamental limitation is irreducible increase of entropy accompanying selective acts like measurement of preparation. Relevant theory of machines (automata. Turing machines) and issues involved in physical realizations of those machines are discussed. Quantum measurement, the Einstein-Podolsky-Rosen paradox, the fundamental importance of irreversibility, information and entropy, and their relation to Goedel's theorems on completeness and consistency of formal systems are analyzed. Irreversibility of measurement appears necessary to provide quantum mechanics with the incompleteness needed to avoid inconsistency. Motivation and justification of computer paradigms for fundamental modeling of biological systems is given.


Entropy Quantum Field Theory Quantum Mechanic Biological System Formal System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Benioff, P. (1980).Journal of Statistical Physics,22, 563.Google Scholar
  2. Benioff, P. (1982).International Journal of Theoretical Physics 21, 177 (this issue).Google Scholar
  3. Bennett, C. H. (1973).IBM Journal of Research and Development,6, 525.Google Scholar
  4. Bennett, C. H. (1982).International Journal of Theoretical Physics, to appcar.Google Scholar
  5. Bohr, N. (1935).Physical Review,48, 696.Google Scholar
  6. Cooper, J. A., Jr. (1981).Proceedings of the IEEE,69, 267.Google Scholar
  7. Denning, P. J., Dennis, J. B., and Qualitz, J. E. (1978),Machines, Languages, and Computation. Prentice-Hall, Englewood Cliffs, New Jersey.Google Scholar
  8. Einstein, A., Podolsky, B., and Rosen, N. (1935).Physical Review,47, 777.Google Scholar
  9. Fredkin, E., and Toffoli, T. (1982).International Journal of Theoretical Physics,21, 219 (this issue).MathSciNetGoogle Scholar
  10. Goedel, K. (1931).Monatshefte für Mathematik und Physik,38, 173.CrossRefGoogle Scholar
  11. Goedel, K. (1936).Ergeb. eines math. Kolloquium,4, 34.Google Scholar
  12. Ginzburg, A., (1968).Algebraic Theory of Automata. Academic Press, New York.Google Scholar
  13. Hopcroft, J. E., and Ullman, J. D. (1979).Introduction to Automata Theory, Languages and Computation. Addison-Wesley, Reading, Massachusetts.Google Scholar
  14. Keyes, R. W. (1981).Proceedings of the IEEE,69, 267.Google Scholar
  15. Kogelnik, H. (1981).Proceedings of the IEEE,69, 262.Google Scholar
  16. Lamb, W. E., Jr. (1969).Physics Today,22, 23.Google Scholar
  17. Landauer, R. (1961).IBM Journal,5, 183.Google Scholar
  18. Likharev, K. K. (1982).International Journal of Theoretical Physics,21, 311 (this issue).Google Scholar
  19. Personick, S. D. (1981).Proceedings of the IEEE 69, 262.Google Scholar
  20. Rothstein, J. (1951).Science,114, 171.Google Scholar
  21. Rothstein, J. (1957).American Journal of Physics,25, 510.Google Scholar
  22. Rothstein, J. (1959).Methodos,11, 94.Google Scholar
  23. Rothstein, J. (1964).Philosophy of Science,31, 40.Google Scholar
  24. Rothstein, J. (1967). Chapter XIX inCommunication: Concepts and Perspectives. L. Thayer, ed. Spartan Books, Washington, D.C..Google Scholar
  25. Rothstein, J. (1971). “Informational Generalization of Physical Entropy,” inQuantum Theory and Beyond, T. Bastin, ed. pp. 291–305. Cambridge Univ. Press, Cambridge.Google Scholar
  26. Rothstein, J. (1974).Foundations of Physics,4, 83.Google Scholar
  27. Rothstein, J. (1979). “Generalized Entropy, Boundary Condition and Biology,” inThe Maximum Entropy Formalism, R. D. Levine and M. Tribus eds., pp. 423–468. MIT Press, Cambridge, Massachusetts.Google Scholar
  28. Toffoli, T. (1981).Mathematical Systems Theory,14, 13.Google Scholar
  29. Turing, A. M. (1936).Proceedings of the London Mathematical Society,42, 230;43, 544.Google Scholar
  30. Turing, A. M. (1937).Journal of Symbolic Logic,2, 153.Google Scholar
  31. Schilpp, P. A., ed. (1949).Albert Einstein, Philosopher-Scientist, Vol. VII,Library of Living Philosophers (Univ. of Illinois Press, Glencoe). Paperback reprint. Open Court Pub. Co. LaSalle, Illinois.Google Scholar
  32. Szilard, L. (1929).Zeitschrift für Physik,53, 840.Google Scholar
  33. Von Neumann, J. (1955).Mathematical Foundations of Quantum Mechanics. Princeton Univ. Press. Princeton, New Jersey.Google Scholar
  34. Wyner, A. D. (1981).Proceedings of the IEEE,69, 239.Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • Jerome Rothstein
    • 1
  1. 1.Department of Computer and Information ScienceThe Ohio State UniversityColumbus

Personalised recommendations