Skip to main content
Log in

Berpidil: A pharmacological reappraisal of its potential beneficial effects in angina and tissue protection following ischemia

  • Reviews
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Summary

In this review the pharmacologic properties of the calcium antagonist bepridil have been reexamined, particularly the evidence for an intracellular locus of action for the drug. Physioochemical properties of bepridil show it to be highly lipophylic, rapidly and extensively taken up, and accumulated in certain tissues. Combined electrophysiologic and mechanical studies have provided convincing, but indirect, evidence for an intracellular action of bepridil in cardiac muscle. Bepridil also fulfills, to a greater or lesser extent, certain important pharmacologic criteria necessary for evoking an intracellular action of a drug in cardiac and vascular smooth muscle:

  1. 1.

    Responses to agonists known to utilize intracellular calcium in the response are inhibited to a similar extent to depolarization-induced K+ responses.

  2. 2.

    Phasic and tonic responses to noradrenaline in vascular tissues are not, or are only to a minor extent, differentially antagonized.

  3. 3.

    Responses to the calcium ionophore A 23187 are antagonized.

  4. 4.

    Activity is retained following removal of the cell membrane by surfactants.

  5. 5.

    Isolated enzyme systems (e.g., calmodulin, myosin light-chain kinase) are affected by the drug at similar concentrations to those that are effective in whole cells or tissues.

Finally results obtained with bepridil in ischemic myocardium have been reviewed to ascertain whether its broader pharmacologic spectrum over the calcium-entry blockers is associated with enhanced tissue protective properties. Positive results with bepridil in hypoxic myocytes and ischemic myocardium distinguishes this drug from the classical antianginal agents verapamil, nifedipine, and diltiazem. It is suggested that bepridil, because of its paucity of hemodynamic effects, may be of special therapeutic interest in the management of silent ischemia where cellular mechanisms leading to cytoprotection are more desirable than strong hemodynamic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nayler WG, Calcium antagonists: Classification and properties. In: Rahwan RG, Witiak DT (eds).Calcium Regulation by Calcium Antagonists. ACS Symposium series no 201. Washington, DC: American Chemical Society, 1982.

    Google Scholar 

  2. Bou J, Llenas J, Massingham R. Calcium entry blocking drugs, calcium antagonists and vascular smooth muscle function.J Auton Pharmacol 1983;3:219–232.

    PubMed  Google Scholar 

  3. Spedding M. Calcium antagonist subgroups.TIPS 1985;6:109–114.

    Google Scholar 

  4. Murphy JG, Marsh JD, Smith TW: The role of calcium in ischaemic myocardial injury.Circulation 1987;75 (Suppl): V15–V24.

    PubMed  Google Scholar 

  5. Van Zwieten PA. Differentiation of calcium entry blockers into calcium channel blockers and calcium overload blockers.Eur Neurol 1986;(Suppl):57–67.

    Google Scholar 

  6. Pang DC, Sperelakis N. Uptake of calcium antagonistic drugs into muscles as related to their lipid solubilities.Biochem Pharmacol 1984;33:821–826.

    PubMed  Google Scholar 

  7. Thuillez C, Giudicelli JF. Pharmacocinétique des inhibiteurs du canal calcique lent. In: Balgagny E, Conseiller C, Cousin MT, Desmont JM, et al. (eds).Les Inhibiteurs Calciques. Paris: Arnette, 1986:81–90.

    Google Scholar 

  8. Mras S, Sperelakis N. Comparision of3H bepridil and3H verapamil uptake into rabbit aortic rings.J Cardiovasc Pharmacol 1982;4:777–783.

    PubMed  Google Scholar 

  9. Pang DC, Sperelakis N. Nifedipine, diltiazem, bepridil and verapamil uptakes into cardiac and smooth muscles.Eur J Pharmacol 1983;87:199–207.

    PubMed  Google Scholar 

  10. Vogel S, Crampton R, Sperelakis N. Blockade of myocardial slow channels by bepridil (CERM 1978).J Pharmacol Exp Ther 1979;210:378–385.

    PubMed  Google Scholar 

  11. Brown J, Marshall RJ, Winslow E. Effects of selective channel blocking agents on contractions and action potentials in K+-depolarized guinea-pig atria.Br J Pharmacol 1985;86:7–17.

    PubMed  Google Scholar 

  12. Kojima M, Sperelakis N. Calcium antagonistic drugs differ in their ability to block the slow Na+ channel in young embryonic chick hearts.Eur J Pharmacol 1983;949–18.

    PubMed  Google Scholar 

  13. Sperelakis N. Electrophysiology of calcium antagonists.J Mol Cell Cardiol 1987;19 (Suppl II):19–47.

    Google Scholar 

  14. Suzuki H, Itoh T, Kuriyama H. Mechanisms of the bepridil-induced vasodilatation of the rabbit mesenteric artery.J Pharmacol Exp Ther 1985;235:749–756.

    PubMed  Google Scholar 

  15. Labrid C, Grosset A, Dureng G, Mironneau J, Duchene-Marullaz P. Some membrane interactions with bepridil, a new antianginal agent.J Pharmacol Exp Therap 1979;211:546–554.

    Google Scholar 

  16. Kane KA, Winslow E. Antidysrhythmic and electrophysiological effects of a new antianginal agent, bepridil.J Cardiovasc Pharmacol 1980;2:193–203.

    PubMed  Google Scholar 

  17. Winslow E, Kane KA. Supraventricular antidysrhythmic and electrophysiological effects of bepridil, a new antianginal agent.J Cardiovasc Pharmacol 1981;3:655–667.

    PubMed  Google Scholar 

  18. Winslow E, Campbell JK, Marshall RJ. Comparative electrophysiological effects of disopyramide and bepridil on rabbit atrial, papillary muscle and Purkinje tissue: Modification by reduced extracellular potassium.J Cardiovasc Pharmacol 1986;8:1208–1216.

    PubMed  Google Scholar 

  19. Barron E, Marshall RJ, Martorana M, Winslow E. Comparative antiarrhythmic and electrophysiological effects of drugs known to inhibit calmodulin (TFP, W7 and bepridil).Br J Pharmacol 1986;89:603–612.

    PubMed  Google Scholar 

  20. Osaka T, Kodama I, Toyama J, Yamada K. Effects of bepridil on ventricular depolarization and repolarization of rabbit isolated hearts with particular reference to its possible proarrhythmic properties.Br J Pharmacol 1988;93:775–780.

    PubMed  Google Scholar 

  21. Van Breemen C, Farinas BR, Gerba P, McNaughton ED. Excitation-contraction coupling in rabbit aorta studied by the lanthanum method for measuring cellular calcium influx.Circul Res 1972;30:44–54.

    Google Scholar 

  22. Mras S, Sperelakis N. Bepridil (CERM 1978) and verapamil depression of contractions of rabbit aortic rings.Blood Vessels 1981;18:196–205.

    PubMed  Google Scholar 

  23. Sperelakis N, Mras S. Depression of contractions of rabbit aorta and guinea-pig vena cava by mesudipine and other slow channel blockers.Blood Vessels 1983;20:172–183.

    PubMed  Google Scholar 

  24. Flaim SF, Ratz PH, Swigart SC, Gleason MM. Bepridil hydrochloride alters potential-dependent and receptor-operated calcium channels in vascular smooth muscle of rabbit aorta.J Pharmacol Exp Therap 1985;234:63–71.

    Google Scholar 

  25. Winslow E, Farmer S, Martorana M, Marshall RJ. The effects of bepridil compred with calcium antagonists on rat and rabbit aorta.Eur J Pharmacol 1986;131:219–228.

    PubMed  Google Scholar 

  26. Rahwan RG. The methylenedioxyindene calcium antagonists.Life Sci 1985;37:687–702.

    Google Scholar 

  27. Campbell JK, Winslow E, Marshall RJ. The effects of bepridil, compared with calcium channel inhibitors and calmodulin antagonists on both spontaneous activity and contractions induced by potassium or phenylephrine in rat portal vein.Eur J Pharmacol 1986:132:187–196.

    PubMed  Google Scholar 

  28. Wong PC, Keirans CJ, Timmermans PBMWM. Heterogenous effects of Ca2+ entry blockers on biphasic constriction of the rabbit ear artery.Eur J Pharmacol 1986;131:307–310.

    PubMed  Google Scholar 

  29. Shaeffer P, Baissat J, Dureng G, Lamar JC, Stoclet JC. Effets du bépridil, de son ammonium quaternaire et du vérapamil sur les contractions de la veine porte et de l'artére caudale de rat.J Pharmacologie 1985;16:97.

    Google Scholar 

  30. Shaeffer P, Baissat J, Dureng G, Lamar JC, Stoclet JC. Effects of bepridil and if its quaternary derivative on rat tail artery.Eur J Pharmacol 1986;123:155–159.

    PubMed  Google Scholar 

  31. Hescheler J, Pelzer D, Trube G, Trautwein W. Does the organic calcium channel blocker D-600 act from inside or outside on the cardiac cell membrane?Pflügers Archives 1982;393:287–291.

    Google Scholar 

  32. Chapman RA, Leoty C. The time dependent and dose-dependent effects of caffeine on the contraction of the ferret heart.J Physiol (London) 1976;256:287–314.

    Google Scholar 

  33. Leboeuf J, Leoty C, Lamar JC. Mise en évidence d'une action intracellulaire de bépridil sur le coeur de furet.Arch Mal Coeur 1987;80:XXVIII, Abs 80.

    Google Scholar 

  34. Boddeke HWGM, Heynis JB, Wilffert B, Van Zwieten PA. A study on the mechanism of negative inotropy of some calcium entry blockers in isolated guinea-pig hearts.Br J Pharmacol 1987;90 (Suppl):131.

    PubMed  Google Scholar 

  35. Boddeke HWGM, Wilffert B, Heynis JB, Van Zwieten PA. Investigation of the mechanism of negative inotropic activity of some calcium antagonists.J Cardiovasc Pharmacol 1988;11:321–325.

    PubMed  Google Scholar 

  36. Itoh H, Ishikawa T, Hidaka H. Effects on calmodulin of bepridil, an antianginal agent.J Pharmacol Exp Therap 1984;230:737–741.

    Google Scholar 

  37. Reiermann HJ, Ruegg JC. Investigations on calmodulin antagonistic effects of bepridil in intact and skinned fibres of smooth muscle.Arzneim-Forsch/Drug Res 1986;36: 668–670.

    Google Scholar 

  38. Lugnier C, Follenius A, Gerard D, Stoclet JC. Bepridil and flunarizine as calmodulin inhibitors.Eur J Pharmacol 1984;98:157–158.

    PubMed  Google Scholar 

  39. Lamers JMJ, Cysouw KJ, Verdouw PD. Slow calcium channel blockers and calmodulin.Biochem Pharmacol 1985;34:3837–3843.

    PubMed  Google Scholar 

  40. Agree P, Virshup D, Bennett V. Bepridil and cetiedil: Vasodilators which inhibit Ca++-dependent calmodulin interactions with erythrocyte membranes.J Clinical Invest 1984;74:812–820.

    Google Scholar 

  41. Younes A, Moins N, Habert M. Bepridil a new effector of oxidative phosphorylations.Biochimie 1977;59:73–78.

    PubMed  Google Scholar 

  42. Younes A, Constantin M. Effects of bepridil on mitochondrial ATPase reactions.Biochem Pharmacol 1980;29: 1135–1139.

    PubMed  Google Scholar 

  43. Fuchs J, Mainka L, Reifart N, Zimmer G. Effects of bepridil on heart mitochondrial membrane and the isolated rat heart preparation.Arzneim-Forsch/Drug Res 1986;36: 209–212.

    Google Scholar 

  44. Tari C, Fournier N, Ducet G, Crevat A, Albengres E, Urien S, Tillement JP. Comparative study of bepridil and nicardipine action on respiration and calcium transport in mitochondria.Int J Clinical Pharmacol Ther Toxicol 1987;35:26–30.

    Google Scholar 

  45. Cramb G, Dow JW. Uptake of bepridil into isolated ventricular myocytes.Biochem Pharmacol 1983;32:227–231.

    PubMed  Google Scholar 

  46. Marshall RJ, Winslow E, Lamar JC, Apoil E Bepridil. In: Scriabine A (ed).New Drugs Annual: Cardiovascular Drugs. New York: Raven Press, 1984:157–176.

    Google Scholar 

  47. Hugenholtz PG, Serruys PW, Fleckenstein A, Nayler W. Why Ca2+ antagonists will be most useful before or during early myocardial ischaemia and not after infarction has been established.Eur Heart J 1986;7:270–278.

    PubMed  Google Scholar 

  48. Nayler WG. Calcium antagonists and the ischaemic myocardium.Int J Cardiol 1987;15:267–285.

    PubMed  Google Scholar 

  49. Hearse DJ, Crome R, Yellon DM, Wyse RKH. Metabolic and flow correlates of myocardial ischaemia.Cardiovasc Res 1983;17:452–458.

    PubMed  Google Scholar 

  50. Nayler WG, Ferrari R, Williams A. Protective effect of pretreatment with verapamil, nifedipine and propranolol on mitochondrial function in the ischaemic and reperfused myocardium.Am J Cardiol 1980;46:242–248.

    PubMed  Google Scholar 

  51. Weishaar RE, Bing RJ. The beneficial effect of a calcium channel blocker diltiazem on the ischaemic reperfused heart.J Mol Cell Cardiol 1980;12:993–1009.

    PubMed  Google Scholar 

  52. Higgins AJ, Blackburn KJ. Prevention of reperfusion damage in working rat hearts by calcium antagonists and calmodulin antagonists.J Mol Cell Cardiol 1984;16:427–438.

    PubMed  Google Scholar 

  53. Fitzpatrick DG, Karmazyn M. Comparative effects of calcium channel blocking agents and varying extracellular calcium concentration on hypoxia/reoxygenation and ischaemia/reperfusion-induced cardiac injury.J Pharmacol Exp Therap 1984;228:761–768.

    Google Scholar 

  54. Watts JA. Protection of ischaemic hearts by Ca2+ antagonists.J Mol Cell Cardiol 1986;18 (Suppl 4):71–75.

    PubMed  Google Scholar 

  55. De Jong JW. Cardioplegia and calcium antagonists: A review.Ann Thoracic Surgery 1986;42:593–598.

    Google Scholar 

  56. De Leiris J, Richard V, Pestre S. Calcium antagonists and experimental myocardial ischaemia and infarction. In: Opie LH (ed).Calcium Antagonists and Cardiovascular Disease. New York: Raven Press: 1984:105.

    Google Scholar 

  57. Jackson CV, Mitsos SE, Simpson PJ, Driscoll EM, Lucchessi BR. Effects of bepridil on regional and global myocardial ischaemia/reperfusion-induced injury.Pharmacology 1985;30:320–332.

    PubMed  Google Scholar 

  58. Boddeke HWGM. New aspects of calcium antagonists and their effects upon ischaemia. PhD Thesis, University of Amsterdam, 1988.

  59. Watts J, Maiorano P, Harwell T. Comparision of the effects of bepridil and diltiazem upon globally ischaemic rat hearts.Eur J Pharmacol 1987;134:25–33.

    PubMed  Google Scholar 

  60. Huizer T, De Jong JW, Achterberg PW. Protection by bepridil against myocardia ATP-catabolism is probably due to negative inotropy.J Cardiovasc Pharmacol 1987;10:55–61.

    PubMed  Google Scholar 

  61. Cruz C, Zaoui A, Berson G, Younes A. Protective effects of bepridil on calcium injury of anoxic myocytes isolated from adult rat heart ventricular muscle.J Pharmacol Exp Ther 1987;242:1126–1132.

    PubMed  Google Scholar 

  62. Kaczorowski GL, Garcia ML, King VF, Slaughter RS. Development of inhibitors of sodium, calcium exchange. In:Calcium in Drug Action. Baker PF (ed(.Hb Exp Pharmacol, Berlin: Springer-Verlag, 1987.

    Google Scholar 

  63. Greenberg DA, Carpenter CL, Messing RO. Interaction of calmodulin inhibitors and protein C kinase inhibitors with voltage dependent calcium channels.Brain Res 1987;404:401–404.

    PubMed  Google Scholar 

  64. Constantin M, Dissard A, Tisne-Versailles J, Lamar JC. Effects of bepridil in isoprenaline-induced myocardial ischaemia in the rat.J Mol Cell Cardiol 1984;16 (Suppl 3):38.

    Google Scholar 

  65. Reiermann NJ, Ruck W. Investigations of the protective effect of bepridil on isoprenaline-induced myocardial necroses in rats. In: Van Zwieten PA, Kattenbach M, Schonbaum E (eds).Bepridil: A New Approach in the Management of Angina. Leusden: Medialert, 1984:123–126.

    Google Scholar 

  66. Beaughard M, Piris P, Michelin MT, Lamar JC, Tisne-Versailles J. Reduction by antianginal drugs of experimental vasospasm in the dog.J Mol Cell Cardiol 1984;16 (Suppl 2):62.

    Google Scholar 

  67. Richard V, De Leiris J. Reduction of myocardial infarct size in rats under the effect of bepridil. In: Dhalla NS, Hearse DJ (eds).Advances in Myocardiology. New York: Plenum, 1985.

    Google Scholar 

  68. Zalewski A, Faria DB, Cheung WM, Ribeiro LGT, Maroko PR. Comparative effects of five calcium antagonists on infarct size and mortality after coronary occlusion.Circulation 1982;66 (Suppl 11):Abs 263.

    Google Scholar 

  69. Lamar JC, Dureng G, Constantin M, Boero C, Chevalier A. Ischémie expérimentale chez le chien. Activité du bépridil comparativement á celles de quatre substances anti-angineuses de référence.J Pharmacol (Paris) 1982;13:152–153.

    Google Scholar 

  70. Constantin M, Dureng G, Lamar JC, Tisne-Versailles J. Effects of four calcium antagonists on ST segment evaluation and coronary venous efflux of lactate and K+.Br J Pharmacol 1983;79:209.

    Google Scholar 

  71. Beaughard M, Lamar JC, Piris P, Tisne-Versailles J. Effects of bepridil and nifedipine on regional myocardial contractility during ischaemia in anaesthetized dogs.Arch Int Pharmacodyn Ther 1986;279:83–102.

    PubMed  Google Scholar 

  72. Marshall RJ, Muir AW The beneficial actions of bepridil in acute myocardial infarction in anaesthetized dogs.Br J Pharmacol 1981;73:471–479.

    PubMed  Google Scholar 

  73. Perez JE, Sobel BE, Henry PD. Improved performance of ischaemic canine myocardium in response to nifedipine and diltiazem.Am J Physiol 1980;239:H658–H663.

    PubMed  Google Scholar 

  74. Jolly SR, Gross GJ. Improvement in ischaemic myocardial blood flow following a new calcium antagonist.Am J Physiol 1980;239:H163-H171.

    PubMed  Google Scholar 

  75. Nomura H, Nagata K, Futamura Y, Mochizuki K, Hama Y, Sotosata I, Yasui S. Effects of niludipine on regional myocardial blood flow and regional myocardial function in the dog with partial occlusion of the coronary artery.Arzneim-Forsch/Drug Res 1980;30:1258–1263.

    Google Scholar 

  76. Solaro RJ, Bousquet P, Johnson JD. Stimulation of cardiac myofilament force, ATPase activity and tropinin C Ca2+ binding by bepridil.J Pharmacol Exp Ther 1986;238:502–507.

    PubMed  Google Scholar 

  77. Leclercq JF, Kural S, Valere PE. Bépridil et torsades de pointes.Arch Mal Coeur 1983;3:341–348.

    Google Scholar 

  78. Zeller FP, Spinler SA. Bepridil: A new long-acting calcium channel blocking agent.Drug Intell Clin Pharma 1987;121:487–492.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Massingham, R., Van Zwieten, P.A. Berpidil: A pharmacological reappraisal of its potential beneficial effects in angina and tissue protection following ischemia. Cardiovasc Drug Ther 3, 731–742 (1989). https://doi.org/10.1007/BF01857623

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01857623

Key Words

Navigation