Relativity and quantum mechanics

  • Hüseyin Yilmaz


Conditions under which quantum mechanics can be made compatible with the curved space-time of gravitation theories is investigated. A postulate is imposed in the formv=v g wherev is the kinematical Hamilton-Jacobi (geometric optic limit) velocity andv g is the group velocity of the waves. This imposes a severe condition on the possible coordinates in which the Schrödinger form (the coordinate realization) of quantum mechanics can be set up for purposes of calculating observable effects. Some such effects are calculated for a class of theories and are compared with experiments.


Field Theory Elementary Particle Quantum Field Theory Quantum Mechanic Group Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Born, M., and Born, H. (1971). TheBorn-Einstein Letters, p. 125. Walker and Co., New York.Google Scholar
  2. Colella, R., Overhouser, A. W., and Werner, S. A. (1975).Physical Review Letters,34, 1472.Google Scholar
  3. Denisov, V. I., and Logunov, A. A. (1980). Institute of Nuclear Research, Academy of Sciences USSR, P-0159.Google Scholar
  4. Dirac, P. A. M. (1975).General Theory of Relativity, p. 38. Wiley, New York.Google Scholar
  5. Dirac, P. A. M. (1976).Quantum Mechanics, p. 114, fourth revised edition. Oxford University Press.Google Scholar
  6. Drever, R. W. P. (1961).Philosophical Magazine,6, 683.Google Scholar
  7. Eddington, A. S. (1957).Theory of Relativity, p. 94, Cambridge University Press.Google Scholar
  8. Feynman, R. P. (1971).Lectures on Gravitation, p. 110. California Institute of Technology, Pasadena.Google Scholar
  9. Greenberger, D. M., and Overhauser, W. A. (1980).Scientific American, May, 66.Google Scholar
  10. Greenberger, D. M.,(1968).Annals of Physics,47, 116.Google Scholar
  11. Hughes, V. W. (1964).Gravitation and Relativity, H. Y. Chiu and W. F. Hoffman, eds., p. 106. W. A. Benjamin, New York.Google Scholar
  12. Infeld, L. (1959).Annals of Physics,6, 341.Google Scholar
  13. Landau, L. D., and Lifshitz, H. M. (1962).Classical Theory of Fields, footnote, p. 341. Addison-Wesley, Reading, Massachusetts.Google Scholar
  14. Logunov, A. A., Folomeskin, N. V., and Vlasov, A. A. (1977).Theoretical and Mathematical Physics (USSR),33, 174.Google Scholar
  15. Möller, C. (1958).Max Planck Festschrift, p. 139. Berlin.Google Scholar
  16. Ohanian, H. C. (1976).Gravitation and Spacetime. W. W. Norton, New York.Google Scholar
  17. Rosen, N. (1956). Jubilee of Relativity Theory, Basel.Google Scholar
  18. Schwartz, H. M. (1977).American Journal of Physics,45, 899.Google Scholar
  19. Scheidegger, A. E. (1956).Reviews of Modern Physics,25, 451.Google Scholar
  20. Tupper, B. O. J. (1974a).Nuovo Cimento,19B, 135.Google Scholar
  21. Tupper, B. O. J. (1974b).Nuovo Cimento Letters,10, 627.Google Scholar
  22. Vessot, R. F. C., and Levine, M. W. (1981).Physical Review Letters,45, 26, 2082.Google Scholar
  23. Weinberg, S. (1965).Physical Review,138, 988 (p. 999).Google Scholar
  24. Will, C. M. (1974).Experimental Gravitation, B. Bertotti, ed., pp. 44, 10. Academic Press, New York.Google Scholar
  25. Yilmaz, H. (1973).Nuovo Cimento Letters,7, 337.Google Scholar
  26. Yilmaz, H. (1975).Nuovo Cimento,26B, 577.Google Scholar
  27. Yilmaz, H. (1976).Annals of Physics,104, 413.Google Scholar
  28. Yilmaz, H. (1977).Nuovo Cimento Letters,20, 681.Google Scholar
  29. Yilmaz, H. (1978).Nuovo Cimento Letters,22, 647.Google Scholar
  30. Yilmaz, H. (1979).Hadronic Journal 2, 1196.Google Scholar
  31. Yilmaz, H. (1980).Hadronic Journal,3, 1478.Google Scholar
  32. Yilmaz, H. (1981).Physics Today, October.Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • Hüseyin Yilmaz
    • 1
  1. 1.Applied and Basic Advanced TechnologyHamamatsu TVWinchester

Personalised recommendations