Advertisement

Cardiovascular Drugs and Therapy

, Volume 4, Issue 3, pp 723–730 | Cite as

In-vitro study of the effect of clentiazem on rabbit aorta and on myocardium

  • Hiroshi Narita
  • Robert Ginsburg
Calcium Antagonists

Summary

We evaluated the pharmacologic action of clentiazem, a newly synthesized diltiazem derivative, on isolated rabbit aorta and myocardium. In addition to its Ca2+ blocking action, clentiazem demonstrated both vasorelaxing and negative inotropic actions similar to diltiazem. The vasorelaxant action of clentiazem on the tonic phase of KCl-induced contraction (EC50=6.13×10−8 M) was 4.5 times more potent than diltiazem (EC50=2.77×10−7 M). However, the negative inotropic action of clentiazem (IC50=4.34×10−5 M) was similar to diltiazem (IC50=3.94×10−5 M). Selectivity ratios, comparing the effectiveness in cardiac muscle with aorta, were clentiazem (708) > diltiazem (142). In conclusion, clentiazem is a Ca2+ antagonist and demonstrates greater vasoselectivity than diltiazem. It also has a longer lasting action than diltiazem.

Key Words

calcium antagonist clentiazem diltiazem, vasorelaxation negative inotropic action 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hosoda S. Clinical experience of diltiazem. In: Bing RJ, ed.New drug therapy with calcium antagonist. Diltiazem Hakone Symposium 1978. Amsterdam: Excerpta Medica, 1979:230–242.Google Scholar
  2. 2.
    Mizuno Y, Yasui S, Tobata I, et al. Effect of CRD-401 on ischemic heart diseases.Jpn J Clin Exp Med 1973;50:565–573.Google Scholar
  3. 3.
    Yasue H. Effects of diltiazem on angina pectoris in comparison with other antianginal drugs. In: Bing RJ, ed.New drug therapy with calcium antagonist. Diltiazem Hakone Symposium 1978. Amsterdam: Excerpta Medica, 1979:219–229.Google Scholar
  4. 4.
    Nagao T, Narita H, Sato M, et al. Development of diltiazem, a calcium antagonist: Coronary vasodilating and antihypertensive actions.Clin Exp Hyperteus 1982;A4:285–296.Google Scholar
  5. 5.
    Sato M, Murata S, Narita H, et al. Hypotensive effects of diltiazem hydrochloride in the normotensive, spontaneously hypertensive and renal hypertensive rats.Folia Pharmacol (Jpn) 1979;75:99–106.Google Scholar
  6. 6.
    Yamaguchi I, Ikezawa K, Murata S, et al. Hypotensive effects of diltiazem in DOCA/saline hypertensive rats.Folin Pharmacol (Jpn) 1979;75:191–199.Google Scholar
  7. 7.
    Ikeda M, Arakawa N, Inagaki Y, et al. Clinical effect of diltiazem (Herbesser”) on essential hypertension—comparison with propranolol in thiazide combination therapy by double group comparison test.Igakn no Agumi 1982;121:222–246.Google Scholar
  8. 8.
    Watanabe T, Yamazaki N, Ogawa K, et al. Clinical effect of diltiazem (Herbesser”) on essential hypertension—double blind group comparison between diltiazem and reserpin.Igaku no Agumi 1982;120:854–871.Google Scholar
  9. 9.
    Narita H, Nagao T, Yabana H, Yamaguchi I. Hypotensive and diuretic actions of diltiazem in spontaneously hypertensive and Wistar Kyoto rats.J Pharmacol Exp Ther 1983;227:472–477.PubMedGoogle Scholar
  10. 10.
    Nakaya H, Schwarz A, Millard RW. Reflex chronotropic and inotropic effects of calcium channel blocking agents in conscious dogs. Diltiazem, verapamil and nifedipine compared.Circ Res 1983;52:302–311.PubMedGoogle Scholar
  11. 11.
    Oyama Y. Hemodynamics and electrophysiological evaluations of diltiazem hydrochloride: A clinical study. In: Bing RJ, ed.New drug therapy with calcium antagonist. Diltiazem Hakone Symposium 1978. Amsterdam: Excerpta Medica, 1979:169–189.Google Scholar
  12. 12.
    Funyu T, Nigawara K, Ohno K, et al. Effects of benzothiazepine derivative (CRD-401) on blood pressure, excretion of electrolytes, and plasma renin activity.Clin Ther 1981;3:456–466.PubMedGoogle Scholar
  13. 13.
    Narita H, Nagao T, Inamasu M, et al. Effects of diltiazem on developing blood pressure and accompanying cardiac and vascular hypertrophy in SHR.Folia Pharmacol (Jpn) 1985;86:165–174.Google Scholar
  14. 14.
    Towart R. Pharmacological modulation of calcium movement across membranes. In: Parratt JR, ed.Control and manipulation of calcium morement. New York: Raven Press, 1985:169–188.Google Scholar
  15. 15.
    Narita H, Murata S, Yabana H, et al., Long-lasting hypotensive and antihypertensive effects of a new 1,5-benzothiazepine calcium antagonist in hypertensive rats and renal hypertensive dogs.Arzucim-Forsh 1988;38:515–520.Google Scholar
  16. 16.
    Kikkawa K, Murata S, Nagao T. Calcium antagonistic and spasmolytic activities of a new 1,5-benzothiazepine derivative in isolated canine and monkey arteries.Arzucim-Forsh 1988;38:526–531.Google Scholar
  17. 17.
    Murata S, Kikkawa K, Yabana H, Nagao T. Cardiovascular effects of a new 1,5-benzothiazepine calcium antagonist in anesthetized dogs.Arzucim-Forsch 1988;38:521–525.Google Scholar
  18. 18.
    Mackay D. How should values of pA2 and affinity constants for pharmacological competitive antagonists be estimated?J Pharm Pharmacol 1978;30:312–313.PubMedGoogle Scholar
  19. 19.
    Bolton TB. Mechanisms of action of transmitters and other substances on smooth muscles.Physiol Rev 1979;59:606–718.PubMedGoogle Scholar
  20. 20.
    Cauvin C, Loutzenhiser R, van Breemen C. Mechanisms of calcium antagonist-induced vasodilation.Ann Rev Pharmacol Tosicol 1983;23:373–396.Google Scholar
  21. 21.
    Perez JE, Sobel BE, Henry PD. Improved performance of ischemic canine myocardium in response to nifedipine and diltiazem.Am J Physiol 1980;8:H658-H663.Google Scholar
  22. 22.
    Ochi R, Trautwein W. The dependence of cardiac contraction on depolarization and slow inward current.Pflugers Arch 1971;323:187–203.PubMedGoogle Scholar
  23. 23.
    Thyrum PT. Inotropic stimuli and systolic transmembrane calcium flow in depolarized guinea-pig atria.J Pharmacol Exp Ther 1974;188:166–179.PubMedGoogle Scholar
  24. 24.
    Tritthart H, Volkmann R, Weiss R, Eibach H. The interrelationship of calcium-mediated action potentials and tension development in cat ventricular myocardium.J Mol Cell Cardiol 1976;8:249–261.PubMedGoogle Scholar
  25. 25.
    Nayler WG, Dillon JS, Daly MJ. Cellular sites of action of calcium antagonists and beta-adrenoceptor blockers. In: Opie LH, ed.Calcium untagonists and cardiocascular discase. New York: Raven Press, 1984:181–191.Google Scholar
  26. 26.
    Opie LH. Calcium antagonists (slow channel blockers). In: Opie LH, ed.The heart. London: Grune & Stratton, 1984:246–260.Google Scholar
  27. 27.
    Morselli PL, Rovei M, Mitchard M, et al. Pharmacokinetics and metabolism of diltiazem in man (observations on healthy volunteers and angina peetoris patients). In: Bing RJ, ed.New drug therapy with calcium antagonist. Diltiazem Hakone Symposium 1978. Amsterdam: Excerpta Medica 1979:152–168.Google Scholar
  28. 28.
    Narita H, Otsuka M, Yabana H, Nagao T. Hypotensive response of spontaneously hypertensive rats to centrally administered diltiazem and its metabolites: In relevance to the hypotensive action by oral administration.J Pharmacobio-Dyn 1986;9:547–553.PubMedGoogle Scholar
  29. 29.
    Narita H, Yabana H, Saso Y, et al. Hypotensive action of diltiazem in conscious, renal hypertensive dogs: Comparison with nifedipine and interaction with pindolol.J Pharmacobio-Dyn 1986;9:554–561.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • Hiroshi Narita
    • 1
  • Robert Ginsburg
    • 1
  1. 1.Division of CardiologyStanford Medical CenterStanfordUSA

Personalised recommendations