Skip to main content
Log in

Effects of a new 1,3-thiazole Derivative ZSY-39 on force of contraction and cyclic AMP content in canine ventricular muscle

  • Experimental Pharmacology
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Summary

A newly synthesized 1,3-thiazole derivative ZSY-39 increased the force of contraction in a concentrationdependent manner in association with elevation of tissue cyclic AMP levels in the isolated canine ventricular trabeculae electrically driven at 0.5 Hz at 37°C. ZSY-39 shortened the duration of isometric contractions mainly by abbreviation of the relaxation time. The maximal response to and EC50 of ZSY-39 were 0.7 (isoproterenol=1.0) and 4.6×10−5 M. Bupranolol (3×10−7 M) did not affect the positive inotropic effect of ZSY-39. The time course of increases in the force of contraction induced by ZSY-39 (10−4 M) coincided with that of cyclic AMP accumulation. The concentration-response curve for the increase in the force of contraction produced by ZSY-39 was superimposable on that of the elevation of cyclic AMP levels. Carbachol (3×10−6 M) shifted the concentration-response curve for the increase in force by ZSY-39 to the right and downward, and decreased the accumulation of cyclic AMP induced by ZSY-39 (10−4 M). ZSY-39 (10−5 M) enhanced significantly the positive inotropic effect of isoproterenol. The relationship between the force of contraction and cyclic AMP levels after the administration of ZSY-39 was not modified by the addition of carbachol or isoproterenol. These findings indicate that cyclic AMP plays an important role in the positive inotropic effect of ZSY-39 on canine ventricular muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Farah AE, Alousi AA. New cardiotonic agents: A search for digitalis substitute.Life Sci 1978;22:1139–1148.

    PubMed  Google Scholar 

  2. Farah AE, Alousi AA, Schwartz RP Jr. Positive inotropic agents.Ann Rev Pharmacol Toxicol 1984;24:275–328.

    Google Scholar 

  3. Robertson DW, Hayes JS. Positive inotropic agents in management of congestive heart failure.ISI Atlas Sci Pharmacol 1988:129–135.

  4. Benotti JR, Grossman W, Braunwald E, et al. Hemodynamic assessment of amrinone: A new inotropic agent.N Engl J Med 1978;299:1373–1377.

    PubMed  Google Scholar 

  5. Alousi AA, Farah AE, Lesher GY, Opalka CJ Jr. Cardiotonic activity of amrinone—Win 40680 [5-amino-3,4′-bipyridin-6(1H)-one].Circ Res 1979;45:666–677.

    PubMed  Google Scholar 

  6. LeJemtel TH, Keung E, Sonnenblick EH, et al. Amrinone: A new non-glycosidic, non-adrenergic cardiotonic agent effective in the treatment of intractable myocardial failure in man.Circulation 1979;1098–1104.

  7. Alousi AA, Stankus GP, Stuart JC, Walton LH. Characterization of the cardiotonic effects of milrinone, a new and potent cardiac bipyridine, on isolated tissues from several animal species.J Cardiovasc Pharmacol 1983;5:804–811.

    PubMed  Google Scholar 

  8. Baim DS, McDowell AV, Cherniles J, et al. Evaluation of a new bipyridine inotropic agent-milrinone—in patients with severe congestive heart failure.N Engl J Med 1983;309:748–756.

    PubMed  Google Scholar 

  9. Arbogast R, Brandt C, Haegele KD, et al. Hemodynamic effects of MDL 17,043, a new cardiotonic agent, in patients with congestive heart failure: Comparison with sodium nitroprusside.J Cardiovasc Pharmacol 1983;5:998–1004.

    PubMed  Google Scholar 

  10. Uretsky BF, Generalovich T, Reddy PS, et al. The acute hemodynamic effects of a new agent, MDL 17,043, in the treatment of congestive heart failure.Circulation 1983; 67:823–828.

    PubMed  Google Scholar 

  11. Crawford MH, Richards KL, Sodums MT, Kennedy GT. Positive inotropic and vasodilator effects of MDL 17,043 in patients with reduced left ventricular performance.Am J Cardiol 1984;53:1051–1053.

    PubMed  Google Scholar 

  12. Roebel LE, Dage RE, Cheng HC, Woodward JK. In vitro and in vivo assessment of the cardiovascular effects of the cardiotonic drug MDL 19205.J Cardovasc Pharmacol 1984;6:43–49.

    Google Scholar 

  13. Dage RC, Roebel LE, Hsieh CP, Woodward JK. Cardiovascular properties of a new cardiotonic agent, MDL 19205.J Cardiovasc Pharmacol 1984;6:35–42.

    PubMed  Google Scholar 

  14. Diederen W, Weisenberger H. Studies on the mechanism of the positive-inotropic action of AR-L 115 BS, a new cardiotonic drug.Arzneimittelforschung 1981;31(1):177–182.

    PubMed  Google Scholar 

  15. Thormann J, Kramer W, Schlepper M. A new non-glycoside, non-adrenergic cardiotonic agent AR-L 115 BS: Hemodynamic proof of its efficacy after both i. v. and oral administration.Arzneimittelforschung 1981;31(1):273–278.

    PubMed  Google Scholar 

  16. Taira N, Endoh M, Iijima T, et al. Mode and mechanism of action of 3,4-dihydro-6-[4-(3,4-dimethoxybenzyl)-1-piperazinyl]-2(1H)-quinolinone (OPC-8212), a novel positive inotropic drug, on the dog heart.Arzneimittelforschung 1984;34:347–355.

    PubMed  Google Scholar 

  17. Grupp G, Grupp IL, Newman G, Schwartz A. Effects of a new positive inotropic agent, 3,4-dihydro-6-[4-(3,4-dimethoxybenzyl)-1-piperazinyl]-2(1H)-quinolinone (OPC-8212) and its solvent, sulfolane, on isolated heart preparations of the rat, guinea pig and dog.Arzneimittelforschung 1984;34:359–363.

    PubMed  Google Scholar 

  18. Sasayama S, Inoue M, Asanoi H, et al. Acute hemodynamic effects of a new inotropic agent, OPC-8212, on severe congestive heart failure.Heart and Vessels 1986;2:23–28.

    PubMed  Google Scholar 

  19. Inoue M, Kim BH, Hori M, et al. Oral OPC-8212 for the treatment of congestive heart failure: Hemodynamic improvement and increased exercise capacity.Heart and Vessels 1986;2:166–171.

    PubMed  Google Scholar 

  20. Chiba S, Furukawa Y, Saegusa K, et al. Cardiovascular responses to a newly developed cardiotonic agent, ZSY-39 [4-methyl-5-(4-pyridinyl)-thiazole-2-carboxyamide] in dog cross-circulated atrial and ventricular preparations.Jpn Heart J 1987;28:253–260.

    PubMed  Google Scholar 

  21. Endoh M, Yamashita S, Taira N. Positive inotropic effect of amrinone in relation to cyclic nucleotide metabolism in the canine ventricular muscle.J Pharmacol Exp Ther 1982; 221:775–783.

    PubMed  Google Scholar 

  22. Endoh M. Correlation of cyclic AMP and cyclic GMP levels with changes in contractile force of dog ventricular myocardium during cholinergic antagonism of positive inotropic actions of histamine, glucagon, theophylline and papaverine.Jpn J Pharmacol 1979;29:855–864.

    PubMed  Google Scholar 

  23. Endoh M. The time course of changes in cyclic nucleotide levels during cholinergic inhibition of positive intropic actions of isoprenaline and theophylline in the isolated canine ventricular myocardium.Naunyn-Schmiedebergs Arch Pharmacol 1980;312:175–182.

    PubMed  Google Scholar 

  24. Endoh M. Dual inhibition of myocardial function through muscarinic and adenosine receptors in the mammalian heart.J Appl Cardiol 1987;2:213–230.

    Google Scholar 

  25. Gilman AG. G proteins and dual control of adenylate cyclase.Cell 1984;17:145–151.

    Google Scholar 

  26. Ui M. Islet-activating protein, pertussis toxin: A probe for functions of the inhibitory guanine nucleotide regulatory component of adenylate cyclase.Trends Pharmacol Sci 1984;5;277–279.

    Google Scholar 

  27. Korth M. Effects of several phosphodiesterase inhibitors on guinea-pig myocardium.Naunyn-Schmiedebergs Arch Pharmacol 1978;302:77–86.

    PubMed  Google Scholar 

  28. Alousi AA, Canter JM, Montenaro MJ, et al. Cardiotonic activity of milrinone, a new and potent cardiac bipyridine, on the normal and failing heart of experimental animals.J Cardiovasc Pharmacol 1983;5:792–803.

    PubMed  Google Scholar 

  29. Honerjäger P, Schäfer-Korting M, Reiter M. Involvement of cyclic AMP in the direct inotropic action of amrinone: Biochemical and functional evidence.Naunyn-Schmiedebergs Arch Pharmacol 1981;318:112–120.

    PubMed  Google Scholar 

  30. Tsien RW. Cyclic AMP and contractile activity in heart.Adv Cyclic Nucleotide Res 1977;8:363–420.

    PubMed  Google Scholar 

  31. Tada M, Katz AM. Phosphorylation of the sarcoplasmic reticulum and sarcolemma.Ann Rev Physiol 1982;44:401–423.

    Google Scholar 

  32. Ray KP, England PJ. Phosphorylation of the inhibitory subunit of troponin and its effect on the calcium dependence of cardiac myofibril adenosine triphosphatase.FEBS Lett 1976;70:11–16.

    PubMed  Google Scholar 

  33. McClellan GB, Winegrad S. The regulation of the calcium sensitivity of the contractile system in mammalian cardiac muscle.J Gen Physiol 1978;72:737–764.

    PubMed  Google Scholar 

  34. Endoh M, Yanagisawa T, Morita T, Taira N. Differential effects of sulmazole (AR-L 115 BS) on contractile force and cyclic AMP levels in canine ventricular muscle: Comparison with MDL 17,043.J Pharmacol Exp Ther 1985;234:267–273.

    PubMed  Google Scholar 

  35. Endoh M, Yanagisawa T, Taira N, Blinks JR. Effects of new inotropic agents on cyclic nucleotide metabolism and calcium transients in canine ventricular muscle.Circulation 1986;73(Suppl III):III117–III133.

    PubMed  Google Scholar 

  36. Malecot CO, Bers DM, Katzung BG. Biphasic contractions induced by milrinone at low temperature in ferret ventricular muscle: Role of the sarcoplasmic reticulum and transmembrane calcium influx.Circ Res 1986;59:151–162.

    PubMed  Google Scholar 

  37. DiBianco R, Shabetai R, Kostuk W, et al. A comparison of oral milronone, digoxin, and their combination in the treatment of patients with chronic heart failure.N Engl J Med 1989;320:677–683.

    PubMed  Google Scholar 

  38. Feldman AM, Baughman KL, Lee WK, et al. Randomized double-blind placebo trial of OPC-8212 in patients with heart failure.Circulation 1989;80(Suppl II):II176.

    Google Scholar 

  39. Lathrop DA, Schwartz A. Evidence for possible increase of sodium channel open time and involvement of Na/Ca exchange by a new positive inotropic drug: OPC-8212.Eur J Pharmacol 1985;117:391–392.

    PubMed  Google Scholar 

  40. Iijima T, Taira N. Membrane current changes responsible for the possible inotropic effect of OPC-8212, a new positive inotropic agent, in single ventricular cells of the guinea pig heart.J Pharmacol Exp Ther 1987;240:657–662.

    PubMed  Google Scholar 

  41. Rapundalo ST, Lathrop DA, Harrison SA, et al. Cyclic AMP-dependent and cyclic AMP-independent actions of a novel cardiotonic agent, OPC-8212.Naunyn-Schmiedeberg's Arch Pharmacol 1988;338:692–698.

    Google Scholar 

  42. Yatani A, Imoto Y, Schwartz A, Brown AM. New positive inotropic agent OPC-8212 modulates single Ca2+ channels in ventricular myocytes of guinea pig.J Cardiovasc Pharmacol 1989;13:812–819.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Endoh, M., Satoh, H., Norota, I. et al. Effects of a new 1,3-thiazole Derivative ZSY-39 on force of contraction and cyclic AMP content in canine ventricular muscle. Cardiovasc Drug Ther 4, 1127–1134 (1990). https://doi.org/10.1007/BF01856509

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01856509

Key Words

Navigation