Advertisement

Foundations of Physics

, Volume 18, Issue 9, pp 887–911 | Cite as

Local observables, nonlocality, and asymptotically separable quantum mechanics

  • K. Kong Wan
Part III. Invited Papers Dedicated To David Bohm

Abstract

Quantum mechanics is troubled by the problem of nonlocality inherent in the theory. In a series of papers we explore the possibility of an algebraic formulation of quantum mechanics based on local observables which would incorporate nonlocality when small distances are involved but would be separable at large distances. This paper reviews some of the basic ideas and theories developed recently. These include a unified localization scheme, the introduction of local comoving evolution, local comoving observables, and related conservation laws. Technical considerations and mathematical jargon are kept to a minimum to avoid obscuring physical reasoning.

Keywords

Quantum Mechanic Large Distance Small Distance Physical Reasoning Unify Localization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. K. Wan and T. D. Jackson,Phys. Lett. 106A, 219 (1984).Google Scholar
  2. 2.
    K. K. Wan, T. D. Jackson, and I. H. McKenna,Nuovo Cimento 81B, 165 (1984).Google Scholar
  3. 3.
    K. K. Wan and R. G. D. McLean,J. Math. Phys. 26, 2540 (1985).Google Scholar
  4. 4.
    K. K. Wan and R. G. D. McLean,Phys. Lett. 94A, 198 (1983).Google Scholar
  5. 5.
    K. K. Wan and R. G. D. McLean,Phys. Lett. 95A, 76 (1983).Google Scholar
  6. 6.
    K. K. Wan and R. G. D. McLean,J. Phys. 17A, 825 (1984), Corrigenda17A, 2367 (1984).Google Scholar
  7. 7.
    K. K. Wan and R. G. D. McLean,J. Phys. 17A, 837 (1984), Corrigenda17A, 2367 (1984).Google Scholar
  8. 8.
    D. R. E. Timson and K. K. Wan, preprint, 1987.Google Scholar
  9. 9.
    D. R. E. Timson, PhD Thesis, St. Andrews University, 1986.Google Scholar
  10. 10.
    K. K. Wan and K. McFarlane,J. Phys. 13A, 2673 (1980).Google Scholar
  11. 11.
    K. K. Wan and K. McFarlane,J. Phys. 14A, 2595 (1981).Google Scholar
  12. 12.
    K. McFlarlane and K. K. Wan,J. Phys. 14A, L1 (1981).Google Scholar
  13. 13.
    K. McFarlane and K. K. Wan,Int. J. Theor. Phys. 22, 55 (1983).Google Scholar
  14. 14.
    K. K. Wan and I. H. McKenna,Algebras, Groups, and Geometries 1, 154 (1984).Google Scholar
  15. 15.
    W. O. Amrein,Nonrelativistic Quantum Dynamics (Reidel, Dordrecht, 1981).Google Scholar
  16. 16.
    W. O. Amrein, J. M. Jauch, and K. B. Sinha,Scattering Theory in Quantum Mechanics (Benjamin, Reading, Mass., 1971).Google Scholar
  17. 17.
    W. Thirring,Quantum Mechanics of Atoms and Molecules (Springer, New York, 1979).Google Scholar
  18. 18.
    P. Pfeifer,Helv. Phys. Acta. 53, 410 (1980).Google Scholar
  19. 19.
    R. Abraham and J. E. Marsden,Foundations of Mechanics (Benjamin/Cummings, Reading, Mass., 1978).Google Scholar
  20. 20.
    E. G. Beltrametti and G. Cassinelli,The Logic of Quantum Mechanics (Addison-Wesley, Reading, Mass., 1981), p. 3.Google Scholar
  21. 21.
    A. Messiah,Quantum Mechanics, Vol. I (North-Holland, Amsterdam, 1967), p. 145.Google Scholar
  22. 22.
    P. Roman,Advanced Quantum Theory (Addison-Wesley, Reading, Mass., 1965), p. 28.Google Scholar
  23. 23.
    K. K. Wan and C. Viasminsky,Prog. Theor. Phys. 58, 1030 (1977).Google Scholar
  24. 24.
    J. Weidmann,Linear Operators in Hilbert Spaces (Springer, New York, 1980), p. 85.Google Scholar
  25. 25.
    J. D. Dollard,Comm. Math. Phys. 12, 193 (1969).Google Scholar
  26. 26.
    R. R. Strichartz,J. Func. Anal. 40, 341 (1981).Google Scholar
  27. 27.
    V. Enss,Comm. Math. Phys. 89, 245 (1983).Google Scholar
  28. 28.
    E. Merzbacher,Quantum Mechanics (Wiley, New York, 1970), p. 140.Google Scholar
  29. 29.
    G. W. Mackey,Mathematical Foundations of Quantum Mechanics (Benjamin, New York, 1963).Google Scholar
  30. 30.
    J. M. Jauch,Foundations of Quantum Mechanics (Addison-Wesley, Reading, Mass., 1968).Google Scholar
  31. 31.
    P. Mittelstaedt,Quantum Logic (Reidel, Drodrecht, 1978).Google Scholar
  32. 32.
    R. Haag and D. Kastler,J. Math. Phys. 5, 848 (1964).Google Scholar
  33. 33.
    G. G. Emch,Algebraic Methods in Statistical Mechanics and Quantum Field Theory (Wiley, New York, 1972).Google Scholar
  34. 34.
    O. Bratteli and D. W. Robinson,Operator Alhebras and Quantum Statistical Mechanics, Vol. I (Springer, New York, 1979).Google Scholar
  35. 35.
    N. N. Bogolubov, A. A. Logunov, and I. T. Todorov,Introduction to Axiomatic Quantum Field Theory (Benjamin, Reading, Mass., 1975), Chap. 23.Google Scholar
  36. 36.
    E. Prugovecki,Quantum Mechanics in Hilbert Space (Academic Press, New York, 1981).Google Scholar
  37. 37.
    P. Roman,Some Modern Mathematics for Physicists and other Outsiders (Pergamon, New York, 1975).Google Scholar
  38. 38.
    K. K. Wan and R. G. D. McLean,Phys. Lett. 102A, 163 (1984).Google Scholar
  39. 39.
    K. K. Wan and T. D. Jackson,Phys. Lett. 111A, 223 (1985).Google Scholar
  40. 40.
    H. Primas and U. Muller-Herold,Adv. Chem. Phys. 38, (1978), Chap. 3.5.Google Scholar
  41. 41.
    K. Hepp,Helv. Phys. Acta. 45, 237 (1972).Google Scholar
  42. 42.
    G. G. Emch,Helv. Phys. Acta. 45, 1049 (1972).Google Scholar
  43. 43.
    B. Whitten-Wolfe and G. G. Emch,Helv. Phys. Acta. 49, 45 (1976).Google Scholar
  44. 44.
    M. A. Naimark,Linear Differential Operators, Vol. II (Harrap, London, 1968), p. 209.Google Scholar
  45. 45.
    W. Arveson,An Invitation to C*-Algebra (Springer, New York, 1976), p. 21.Google Scholar
  46. 46.
    F. Selleri and G. Tarozzi,Riv. Nuovo Cimento 4(2), (1981).Google Scholar
  47. 47.
    W. M. de Muynck,Found. Phys. 14, 199 (1984).Google Scholar
  48. 48.
    C. E. Lanford and D. Ruelle,Comm. Math. Phys. 13, 194 (1969).Google Scholar
  49. 49.
    K. K. Wan,Can. J. Phys. 58, 976 (1980).Google Scholar
  50. 50.
    W. H. Furry,Phys. Rev. 49, 393 (1936).Google Scholar
  51. 51.
    E. Schrödinger,Proc. Camb. Phil. Soc. 31, 555 (1939).Google Scholar
  52. 52.
    M. Mugur-Schachter, inQuantum Mechanics a Half Century Later, J. Leite Lopes and M. Paty, eds. (Reidel, Dordrecht, 1977).Google Scholar
  53. 53.
    G. C. Ghirardi, A. Rimini, and T. Weber,Nuovo Cimento 36B, 97 (1976).Google Scholar
  54. 54.
    G. C. Hegerfeldt,Phys. Rev. D10, 3320 (1974).Google Scholar
  55. 55.
    G. C. Hegerfeldt and S. N. M. Ruijsenaas,Phys. Rev. D22, 377 (1980).Google Scholar
  56. 56.
    F. W. Byron and R. W. Fuler,Mathematics of Classical and Quantum Physics, Vol. I (Addison-Wesley, Reading, Mass., 1–969), Chap. 5.11.Google Scholar
  57. 57.
    M. Reed and B. Simon,Methods of Modern Mathematical Physics, Vol. II (Academic Press, New York, 1975), p. 282.Google Scholar
  58. 58.
    K. K. Wan and D. R. E. Timson,Phys. Lett. 111A, 165 (1985).Google Scholar
  59. 59.
    A. Einstein, B. Podolsky, and N. Rosen,Phys. Rev. 47, 777 (1935).Google Scholar
  60. 60.
    D. Bohm,Quantum Theory (Prentice-Hall, Englewood Cliffs, New Jersey, 1951).Google Scholar
  61. 61.
    M. Vujicic and F. Herbut,J. Math. Phys. 25, 2253 (1984).Google Scholar
  62. 62.
    D. Bohm,Phys. Rev. 85, 166 (1952).Google Scholar
  63. 63.
    C. Philippidis, C. Dewdney, and B. J. Hiley,Nuovo Cimento 52B, 15 (1979).Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • K. Kong Wan
    • 1
  1. 1.Physics DepartmentSt. Andrews UniversitySt. Andrews, FifeScotland, United Kingdom

Personalised recommendations