Bioscience Reports

, Volume 16, Issue 4, pp 327–341 | Cite as

Effect of transmembrane Ca2+ gradient on the coupling of β-adrenergic receptors and adenylyl cyclase

  • G. F. Fan
  • X. Y. Yang
  • Y. G. Huang
  • F. Y. Yang
Short Papers


In order to investigate the effect of transmembrane Ca2+ gradient on Gs mediated coupling of β-AR and adenylyl cyclase, β-AR from duck erythrocytes and Gs and adenylyl cyclase from bovine brain cortices were co-reconstituted into asolectin liposomes with different transmembrane Ca2+ gradient. These proteoliposomes were proven to be impermeable to water-soluble substances. The results obtained indicate that a physiological transmembrane Ca2− gradient (1000-fold) is essential for higher stimulation of adenylyl cyclase by hormone-activated β-AR via coupling to Gs and can be further enhanced by the decrease of such Ca2+ gradient within certain range (100 fold) following Ca2+ influx into cells during signal transduction. Fluorescence polarization of DPH revealed that transmembrane Ca2+ gradient modulates adenylyl cyclase and its stimulation by hormones through mediating a change in lipid fluidity. Correspondent conformational changes of β-AR were also detected from the fluorescence spectra and quenching of Acrylodan-labelled β-AR in those proteoliposomes. It is suggested that a proper transmembrane Ca2+ gradient is essential for the optimal fluidity of the phospholipid bilayer in the proteoliposomes, which favors the formation of a suitable conformation of the reconstituted β-AR and thus promotes the stimulation of adenylyl cyclase activities by hormone-activated β-AR via Gs.

Key words

Transmembrane Ca2+ gradient β-adrenergic receptors (β-AR) stimulatory GTP-binding protein (GS) adenylyl cyclase lipid fluidity 



adenosine triphosphate


β-adrenergic receptors


adenylyl cyclase






Ca2+ concentration inside proteoliposomes


Ca2+ concentration outside proteoliposomes


cyclic adenosine monophosphate




fluorescein sulfonate


Stimulatory GTP-binding protein


guanosine triphosphate


guanosine 5′-O-(3-thiotriphosphate)




sodium dodecyl sulfate




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. φye, I. and Sutherland, E. W. (1966)Biochim. Biophys. Acta 127:347–354.PubMedGoogle Scholar
  2. Benovic, J. L. (1990) in:Receptor Biochemistry—A Practical Approach (Hulme, E. C., Ed.) Oxford University Press, New York, pp 125–140.Google Scholar
  3. Berridge, M. J. (1993)Nature 367:315–325.Google Scholar
  4. Carafoli, E. (1987)Annu. Rev. Biochem. 56:395–433.PubMedGoogle Scholar
  5. Caron, M. G., Srinivasan, Y., Pitha, J., Kociolek, K. and Lefkowitz, R. J. (1979)J. Biol. Chem. 254:2923–2927.PubMedGoogle Scholar
  6. Cerione, R. A. (1990) in:Receptor-Effector Coupling—A Practical Approach (Hulme, E. C., Ed.) Oxford University Press, New York, pp 59–82.Google Scholar
  7. Cerione, R. A., Sibley, D. R., Codina, J., Benovic, J. L., Winslow, J., Neer, E. J., Birnbaumer, L., Caron, M. G. and Lefkowitz, R. (1984)J. Biol. Chem. 259:9979–9982.PubMedGoogle Scholar
  8. Choi, E. J., Wong, S. T., Hinds, T. J. and Storm, D. R. (1992a)J. Biol. Chem. 267:12440–12442.PubMedGoogle Scholar
  9. Choi, E. J., Xia, Z. and Storm, D. R. (1992b)Biochemistry 31:6492–6498.PubMedGoogle Scholar
  10. Choi, E. J., Xia, Z. G., Villacres, E. C. and Storm, D. R. (1993)Curr. Opin. Cell Biol. 5:369–273.Google Scholar
  11. Clapham, D. E. (1995)Cell 80:259–268.PubMedGoogle Scholar
  12. Demel, R. A., Van Deenen, L. L. M. and Kinsky, S. C. (1965)J. Biol. Chem. 240:2749–2753.PubMedGoogle Scholar
  13. Dohlman, H. G., Caron, M. G. and Lefkowitz, R. J. (1987)Biochemistry 26:2657–2664.PubMedGoogle Scholar
  14. Fan, G. F. and Chou, L. H. (1994)J. Clin. Biochem. Nutr. 17:111–117.Google Scholar
  15. Fan, G. F. and Huang, Y. G. (1994a)Chinese Science Bulletin 39:1033–1036.Google Scholar
  16. Fan, G. F. and Huang, Y. G. (1994b)Prog. Biochem. Biophys. 21:453–456.Google Scholar
  17. Fan, G. F., Huang, Y. G., Bai, Y. H. and Yang, F. Y. (1995)FEBS, Lett. 357:13–15.Google Scholar
  18. Feder, D., Im, M. J., Klein, H., Hekman, M., Holzhofer, A., Dees, C., Levitzki, A., Helmreich, E. J. M. and Pfeuffer, T. (1986)EMBO J. 5:1509–1514.PubMedGoogle Scholar
  19. Friendland, G. (1990)Biochim. Biophys. Acta 1022:1–7.PubMedGoogle Scholar
  20. Gilman, A. G. (1984)Cell 36:577–579.PubMedGoogle Scholar
  21. Gould, R. J. and Ginsberg, B. H. (1984) in:Membranes, Detergents and Receptor Solubilization (Venter, J. C. Ed.) Liss Press, New York, pp 65–83.Google Scholar
  22. Grisham, C. M. and Barnett, R. E. (1973)Biochemistry 12:2635–2637.PubMedGoogle Scholar
  23. Heron, D. S., Shinitzky, M., Hershkowitz, M. and Samuel, D. (1980)Proc. Natl. Acad. Sci. U.S.A.,77:7463–7467.PubMedGoogle Scholar
  24. Houslay, M. D. and Gordon, L. M. (1983)Curr. Topics Membr. Transport 188:179–231.Google Scholar
  25. Huang, Y. G., Fan, G. F. and Yang, F. Y. (1994)Biosci. Rep. 14:179–187.PubMedGoogle Scholar
  26. Kim, Y. H., Higuchi, W. I., Herron, J. N. and Abraham, W. (1993)Biochim, Biophys. Acta 1148:139–151.Google Scholar
  27. Krupinski, J., Coussen, F., Bakalyar, H. A., Tang, W. J., Feistein, P. G., Orth, K., Slaughter, C., Reed, R. R. and Gilman, A. G. (1989)Science 244:1558–1564.PubMedGoogle Scholar
  28. Lad, P. J. (1980)Biochem. Biophys. Res. Commun. 96:203–210.PubMedGoogle Scholar
  29. Laemmli, U. K. (1970)Nature 227:680–685.PubMedGoogle Scholar
  30. Lakowicz, J. R. (1983) in:Principles of Fluorescence Spectroscopy (Lakowicz, J. R. Ed.), Plenum Press, New York and London, pp 258–304.Google Scholar
  31. Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. (1951)J. Biol. Chem. 193:265–275.PubMedGoogle Scholar
  32. May, D. C., Ross, E. M., Gilman, A. G. and Smigel, M. D. (1985)J. Biol. Chem. 260:15829–15833.PubMedGoogle Scholar
  33. Orly, J. and Schramm, M. (1976)Proc. Natl. Acad. Sci. U.S.A. 72:3433–3437.Google Scholar
  34. Penefsky, H. S. (1977)J. Biol. Chem. 252:2891–2899.PubMedGoogle Scholar
  35. Prendergas, F. G., Meyer, M., Carlson, G. L. Iida, S. and Potter, J. D. (1983)J. Biol. Chem. 258:7541–7544.PubMedGoogle Scholar
  36. Punchwein, G., Pfeuffer, T. and Helmreich, E. J. (1974)J. Biol. Chem. 249:3232–3240.PubMedGoogle Scholar
  37. Rouser, G. (1970)Lipids 5:494.PubMedGoogle Scholar
  38. Shinitzky, M. and Barenholz, Y. (1978)Biochim. Biophys. Acta 515:367–394.PubMedGoogle Scholar
  39. Shinitzky, M., Borochov, H. and Willbrandt, W. (1980) in:Membrane Transport in Erthrocytes (Lassen, U. al., Ed.) Munksgaard, Copenhagen, pp 91–107.Google Scholar
  40. Spiegel, A. M., Shenker, A., Simonds, W. F. and Weinstein, L. S. (1995)J. Clin. Invest. 92:1119–1125.Google Scholar
  41. Steinseis, P. C. and Pang, I. H. (1990) in:Receptor-Effector Coupling—A Practical Approach (Hulme, E. C. Ed.) Oxford University Press, New York, pp 1–29.Google Scholar
  42. Sternweis, P. C. and Robishaw, J. D. (1984)J. Biol. Chem. 259:13806–13813.PubMedGoogle Scholar
  43. Strittmatter, S. and Neer, E. J. (1980)Proc. Natl. Acad. Sci. U.S.A. 77z:6344–6348.Google Scholar
  44. Tsien, R. W. and Tsien, R. Y. (1990)Annu. Rev. Cell Biol. 6:715–760.PubMedGoogle Scholar
  45. Tu, Y. P. and Yang, F. Y. (1994)Chinese J. Biochem. Biophys. 26:81–89.Google Scholar
  46. Vauquelin, G., Geynet, P. and Hanoune, J. (1977)Proc. Natl. Acad. Sci. U.S.A. 74:3710–3714.PubMedGoogle Scholar
  47. Weinstein, J. N., Yoshikami, S., Henkart, P., Blumenthal, R. and Hagins, W. A. (1977)Science 195:489–492.PubMedGoogle Scholar
  48. Whetton, A. D. and Houslay, M. D. (1983)FEBS Lett. 157:70–74.PubMedGoogle Scholar
  49. Yang, F. Y. and Tu, Y. P. (1991)Biochem. Biophys. Res. Com. 175:366–371.PubMedGoogle Scholar
  50. Yovell, Y. and Abrams, W. (1992)Proc. Natl. Acad. Sci. USA 89:6526–6530.PubMedGoogle Scholar
  51. Zhang, X. F. and Yang, F. Y. (1989)Biochem. Biophys. Acta 976:53–62.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • G. F. Fan
    • 1
  • X. Y. Yang
    • 1
  • Y. G. Huang
    • 1
  • F. Y. Yang
    • 1
  1. 1.National Laboratory of BiomacromoleculesInstitute of Biophysics, Chinese Academy of SciencesBeijingChina

Personalised recommendations