Advertisement

Research in Experimental Medicine

, Volume 189, Issue 4, pp 229–239 | Cite as

Scanning microfluorometry in intravital microvascular research

  • S. Witte
Original Papers

Summary

Our own development of fluorometric scanning techniques in intravital microscopy of the microcirculation is described. Very tiny amount of fluorometric substances are detected with a high temporal and locational resolution. The everted small intestinal mesentery of the rat serves as a model. We have given a detailed description of the microscopes used, the optical systems, the conditions of measurement of the microfluorometry, the scanning techniques and the evaluation of the measurement data. The present state of technical development detects 10−12 g of a fluorochromed plasma protein in 8 ms in a measurement field of 2 µm2. The four-digit measurement data of a scanning line of 200 µm length in 0.25 µm locational resolution are registered in about 2 s.

Key words

Scanning microfluorometry Intravital microvascular research Rats 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baker CH, Nastuk WL (1986) Microcirculatory technology. Academic Press, Orlando LondonGoogle Scholar
  2. 2.
    Bloch EH (1963) A method for studying the dynamics of transcapillary transfer quantitatively at the microscopic level in situ in living organs. Angiology 14:97–106Google Scholar
  3. 3.
    Curry FE, Joyner WL, He P (1987) Modulation of transcapillary exchange in individually perfused microvessels. In: Tsuchiya M et al. (eds) Microcirculation — an update, vol 1. Elsevier, Amsterdam, pp 105–108Google Scholar
  4. 4.
    Friedman JJ, Witte S (1986) The radial protein concentration profile in the interstitial space of the rat ileal mesentery. Microvasc Res 31:277–287PubMedGoogle Scholar
  5. 5.
    Gahm T (1983) Quantitative bildanalytische Untersuchung der Wanddurchlässigkeit von Blutkapillargefäßen mit Hilfe der Fluoreszenzmikroskopie. Diplom-Arbeit, Universität StuttgartGoogle Scholar
  6. 6.
    Gahm T, Reinhardt ER, Witte S (1984) Analysis of the wall permeability of blood vessels in the rat mesentery. Res Exp Med 184:1–15Google Scholar
  7. 7.
    Gahm T, Witte S (1986) Measurement of the optical thickness of transparent tissue layers. J Microsc 141:101–110PubMedGoogle Scholar
  8. 8.
    Gerlowski LE, Jain RK (1985) Effect of hyperthermia on microvascular permeability to macromolecules in normal and tumor tissues. Int J Microcirc Clin Exp 4:363–372PubMedGoogle Scholar
  9. 9.
    Kaley G, Altura BM (1977) Microcirculation, vol. 1. University Park Press, Baltimore London TokyoGoogle Scholar
  10. 10.
    Ley K, Arfors K-E (1986) Segmental differences of microvascular permeability for FITC-dextrans measured in the hamster cheek pouch. Microvasc Res 31:84–99PubMedGoogle Scholar
  11. 11.
    Meesen H (1977) Microcirculation. Hb Allg Pathol, Bd 3/7. Springer, Berlin Heidelberg New YorkGoogle Scholar
  12. 12.
    Nairn RC (1976) Fluorescent protein tracing, 4th edn. Churchill Livingstone, Edinburgh London New YorkGoogle Scholar
  13. 13.
    Nakamura Y, Wayland H (1975) Macromolecular transport in the cat mesentery. Microvasc Res 9:1–21PubMedGoogle Scholar
  14. 14.
    Papenfuß HD, Schwarzmann P, Sträßle R, Witte S (1986) Intravital microscopy and theoretical analysis of interstitial transport of fluorescent macromolecules near vascular walls of rat mesentery. Poster: 14th Int Conf Eur Soc Microcirc, LinköpingGoogle Scholar
  15. 15.
    Piller H (1977) Microscope photometry. Springer, Berlin Heidelberg New YorkGoogle Scholar
  16. 16.
    Taylor AE, Granger DN (1984) Exchange of macromolecules across the microcirculation. In: Renkin EM, Michel CC (eds) Handbook of physiology: Cardiovascular system, vol 4. American Physiologic Society, Baltimore, pp 467–520Google Scholar
  17. 17.
    Thaer AA, Sernetz M (1973) Fluorescence techniques in cell biology. Springer, Berlin Heidelberg New YorkGoogle Scholar
  18. 18.
    Wayland H (1982) A physicist looks at the microcirculation. Microvasc Res 23:139–170PubMedGoogle Scholar
  19. 19.
    Wiederhielm CA (1966) Transcapillary and interstitial transport phenomena in the mesentery. Fed Proc 25:1789–1798PubMedGoogle Scholar
  20. 20.
    Witte S (1957) Eine neue Methode zur Untersuchung der Capillarpermeabilität. Z Ges Exp Med 129:181–192PubMedGoogle Scholar
  21. 21.
    Witte S (1957) Fluoreszenzmikroskopische Untersuchungen über die Capillarpermeabilität. Z Ges Exp Med 129:358–367PubMedGoogle Scholar
  22. 22.
    Witte S (1963) Flow pattern pertaining to vascular permeability as observed by fluorescence vital microscopy. In: Copley AL (ed) Proc IVth Int Congr Rheol, Providence, RI, pt 4: Symposium on biorheology. Wiley and Sons, New York London Sydney, pp 451–458Google Scholar
  23. 23.
    Witte S (1967) Methodische Möglichkeiten zum Studium der Gefäßpermeabilität durch intravitale Fluoreszenzmikroskopie. Klin Wochenschr 45:961–965PubMedGoogle Scholar
  24. 24.
    Witte S (1975) Microscopic techniques for the in situ characterization of concentration of tissue components and penetrating molecules. Biorheology 12:173–180PubMedGoogle Scholar
  25. 25.
    Witte S (1979) Microphotometric techniques in intravital microcirculatory studies. J Microsc 116:373–384PubMedGoogle Scholar
  26. 26.
    Witte S (1980) Quantitative vitalmikroskopische Befunde über VF (vascular factor). Quad Coagul Argom Connessi 18:7–70Google Scholar
  27. 27.
    Witte S (1980) Concentration of macromolecules in the tissue and lymphatics. In: 28th Int Congr Physiol Sci, Budapest. Adv Physiol Sci 7:201–210Google Scholar
  28. 28.
    Witte S (1981) Transkapillärer Austausch von Mikro- und Makromolekülen. Arzneimittelforsch 31:2020–2028PubMedGoogle Scholar
  29. 29.
    Witte S (1983) Intra- und extravasale Verteilung von Gerinnungsproteinen. Wechselwirkung mit der Gefäßwand. Behring Inst Mitt 73:13–28PubMedGoogle Scholar
  30. 30.
    Witte S (1984) The role of blood coagulation in capillary permeability. Vital microscopic contributions. Biorheology 21:121–133PubMedGoogle Scholar
  31. 31.
    Witte S (1986) Thrombin as a permeability influencing agent. Proc 6th Bodensee Symp Microcirc, Heidelberg. Progr Appl Microcirc 12:212–216Google Scholar
  32. 32.
    Witte S, Hagel F, Schuler H (1971) Eine Objektkammer für die intravitale Ultraviolett-Mikrospektrophotometrie. Z Ges Exp Med 154:334–338Google Scholar
  33. 33.
    Witte S, Zenzes-Geprägs S (1976) The affinity of fibrinogen to the vessel wall as proved in situ. 9th Eur Conf Microcirc, Antwerp. Bibl Anat 16:279–281Google Scholar
  34. 34.
    Witte S, Zenzes-Geprägs S (1977) Extravascular protein measurements in vivo and in situ by ultramicrospectrophotometry. Microvasc Res 13:225–231PubMedGoogle Scholar
  35. 35.
    Witte S, Zenzes-Geprägs S (1978) Die Beeinflussung des in situ gemessenen extravasalen Proteingehaltes durch Änderung der Gefäßpermeabilität. Res Exp Med (Berl) 172:83–96Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • S. Witte
    • 1
  1. 1.Dept. of MedicineDiakonissen-HospitalKarlsruhe-RüppurrFederal Republic of Germany

Personalised recommendations