Research in Experimental Medicine

, Volume 160, Issue 2, pp 89–94 | Cite as

Influence of erythrocyte deformability on circulation

  • H. Rogausch


In an isolated perfused guinea pig liver the influence of low deformable erythrocytes on blood flow has been tested. Down to 30% reduced deformability of red cells resulted in a significant reduction of flow peculiarly at low pressures. Decrease of venous out-flow hematocrit at nearly normal liver weight indicated slowly circulating rigid red cells, signalizing less effectiveness of the Fahraeus-Lindquist-effect.

Key words

Erythrocyte deformability Fahraeus-Lindquist-effect Capillary circulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Teitel, P.: Correlations of microheological characteristics of red cells (filtrability) and their splenic and hepatic sequestration. Nouv. Rev. franc. Hémat.7, 321 (1967).Google Scholar
  2. 2.
    LaCelle, P. L.: Erythrocyte deformability and its significance to survival in the microcirculation. Biorheology6, 278 (1970).Google Scholar
  3. 3.
    Weed, R. I.: The importance of erythrocyte deformability. Amer. J. Med.49, 147–150 (1970).PubMedGoogle Scholar
  4. 4.
    Rogausch, H.: Decreased erythrocyte deformability in cholestatic jaundice. Acta haemat. (Basel)46, 211–220 (1971).Google Scholar
  5. 5.
    Braasch, D., Rogausch, H.: Decreased red cell deformability after severe burns determined with the chlorpromazine-test. Pflügers Arch.323, 41–49 (1971).Google Scholar
  6. 6.
    Braasch, D.: Red cell deformability and capillary blood flow. Physiol. Rev.51, 679–701 (1971).Google Scholar
  7. 7.
    Teitel, P.: Disc-phere transformation and plasticity alteration of red blood cells. Nature (Lond.)206, 409 (1965).Google Scholar
  8. 8.
    Braasch, D., Rogausch, H.: Deformability and migration speed of red cells centrifuged at low g-values. Pflügers Arch.323, 34–39 (1971).Google Scholar
  9. 9.
    Davoren, P. R., Bornstein, J.: Effect of glucagon on metabolism of glucose and acetate by isolated rat liver. Amer. J. Physiol.197, 887–892 (1959).Google Scholar
  10. 10.
    Miller, L. L. J., Bly, C. G., Watson, M. L., Bale, W. F.: Bradykinin and vasoconstriction in the perfused rat liver. Proc. Soc. exp. Biol. (N.Y.)131, 1198–1200 (1969).Google Scholar
  11. 11.
    Brauer, R. W., Leong, G. F., Pessotti, R. L.: Vasomotor activity in the isolated perfused rat liver. Amer. J. Physiol.174, 304–312 (1953).PubMedGoogle Scholar
  12. 12.
    Craig, A. B.: Glucose, lactate and potassium metabolism in the isolated perfused rat liver. Proc. Soc. exp. Biol. (N.Y.)121, 281–286 (1966).Google Scholar
  13. 13.
    Djojosugito, A. M., Folkow, B., Öberg, B., White, S.: A comparison of blood viscosity measured in vitro and in a vascular bed. Acta physiol. scand.78, 70–84 (1970).PubMedGoogle Scholar
  14. 14.
    Chien, Shu, Shunichi, U., Dellenback, R. J., Gregersen, M. I.: Blood viscosity: influence of erythrocyte deformation. Science157, 827 (1967).Google Scholar
  15. 15.
    Chien, Shu, Usami, S., Dellenback, R. J., Gregersen, M. I.: Shear-dependent deformation of erythrocytes in rheology of human blood. Amer. J. Physiol.219, 136–142 (1970).PubMedGoogle Scholar
  16. 16.
    Goldsmith, H. L.: The microrheology of red blood cell suspensions. J. gen. Physiol.52, 5–27 (1968).Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • H. Rogausch
    • 1
  1. 1.Physiologisches InstitutUniversität Abteilung MikrozirkulationMarburg an der LahnFederal Republic of Germany

Personalised recommendations