Research in Experimental Medicine

, Volume 176, Issue 1, pp 7–14 | Cite as

Effects of acute hemodialysis-induced changes in sodium balance on the renin-angiotensin system in renovascular and spontaneously hypertensive rats

  • A. Röckel
  • A. Brand
  • W. Bechinger
  • A. Heidland
Original Works / Originalarbeiten
  • 15 Downloads

Summary

In two-kidney Goldblatt hypertensive, spontaneously hypertensive, and normotensive control rats the activity of the renin-angiotensin system was tested during variation of sodium balance. Acute, exactly calculable and selective changes of total body sodium were achieved by hemodialyzing the conscious rats using dialysate with either high or low sodium content. The activity of the RAS was evaluated by blood pressure response to AT II blockade (saralasin bolus injection; 25 µg/kg b.w., i.v.) and the plasma-renin activity.

During sodium depletion blood pressure maintenance became renindependent; sodium loading caused a decrease of renin-angiotensin activity in renovascular hypertension. A weak direct correlation between depressor response to saralasin and the PRA could be established in the different sodium-depleted and -loaded states.

Key words

Renin-angiotensin system Sodium balance Experimental hypertension Saralasin Blood pressure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ames, R. P., Borkowski, A. J., Sicinski, A. M., et al.: Prolonged infusions of angiotensin II and norepinephrine and blood pressure, electrolyte balance, and aldosterone and cortisol secretion in normal man and in cirrhosis with ascites. J. Clin. Invest.44, 1171–1186 (1965)PubMedGoogle Scholar
  2. 2.
    Aiken, J. W., Vane, J. R.: Intrarenal prostaglandin release attenuates the renal vasoconstrictor activity of angiotensin. J. Pharmacol. Exp. Ther.184, 678 (1973)PubMedGoogle Scholar
  3. 3.
    Baer, L., Knowlton, A., Laragh, J. H.: Role of sodium balance and the pituitary-adrenal axis in the hypertension of spontaneously hypertensive rats. In: Spontaneous Hypertension, Okamoto, K. (ed.), pp. 203–209. Tokyo: Igaku Shoin Ltd. 1972Google Scholar
  4. 4.
    Brunner, H. R., Chang, P., Wallach, R., et al.: Angiotensin II vascular receptors; their avidity in relationship of sodium balance, the autonomic nervous system, and hypertension. J. Clin. Invest.51, 58–67 (1972)PubMedGoogle Scholar
  5. 5.
    Brunner, H. R., Gavras, H., Laragh, J. H.: Specific inhibition of the renin-angiotensin system: A key to understanding blood pressure regulation. Progr. Cardiovasc. Diseases2, 87–98 (1974)Google Scholar
  6. 6.
    DeJong, W., Lovenberg, W., Sjoerdsma, A.: Increased plasma renin activity in the spontaneously hypertensive rat. Proc. Soc. Exp. Biol. Med.139, 1213–1216 (1972)PubMedGoogle Scholar
  7. 7.
    Healy, J. K., Suszkuo, J. B., Dennis, K. W.: Effect of aldosterone and salt intake on renal and pressor actions of angiotensin. Nephron3, 329–343 (1966)PubMedGoogle Scholar
  8. 8.
    Koletsky, S., Shook, P., Rivera-Valez, J.: Lack of increased renin-angiotensin activity in rats with spontaneous hypertension. Proc. Soc. Exp. Biol. Med.134, 1187–1192 (1970)PubMedGoogle Scholar
  9. 9.
    Marks, L. S., Maxwell, M. H., Kaufman, J. J.: Saralasin bolus test. Rapid screening procedure for renin-mediated hypertension. Lancet 784–787 (1975)Google Scholar
  10. 10.
    McGrath, B. P., Ledingham, J. G. G., Benedict, C. R.: Plasma catecholamines and the pressor response to sar1-ala8-angiotensin II in man. Clin. Sci. Mol. Med.53, 341–348 (1977)PubMedGoogle Scholar
  11. 11.
    Möhring, J., Möhring, B., Naumann, H. J., et al.: Salt and water balance and renin activity in renal hypertension of rats. Am. J. Physiol.228, 1847–1855 (1975)PubMedGoogle Scholar
  12. 12.
    Peart, W. S.: Intrarenal factors in renin release. Contr. Nephrol.12, 5–15 (1978)Google Scholar
  13. 13.
    Phillips, M. J., Mann, J. F. E., Haebara, H., Hoffmann, W. E., Dietz, R., Schelling, P., Ganten, D.: Lowering of hypertension by central saralasin in the absence of plasma renin. Nature270, 445–447 (1977)PubMedGoogle Scholar
  14. 14.
    Röckel, A., Heidland, A., Appel, E., Palm, D.: Depressor effect of saralasin in hypertensive crisis due to phaeochromocytoma. N. Engl. J. Med.296, 50–51 (1977)PubMedGoogle Scholar
  15. 15.
    Röckel, A., Wernze, H., Sabel, B., Heidland, A.: Kritische Analyse des Saralasintestes in der Differentialdiagnostik der Hypertonie. Klin. Wochenschr.55, 651–656 (1977)PubMedGoogle Scholar
  16. 16.
    Röckel, A., Brand, A., Stanjek, A., et al.: Haemodialysis in rats. Res. Exp. Med.172, 187–191 (1978)Google Scholar
  17. 17.
    Röckel, A., Brand, A., Bechinger, W., Heidland, A.: Effects of acute haemodialysis-induced changes in sodium balance upon experimentally hypertensive rats. Contr. Nephrol. (in press) (1979)Google Scholar
  18. 18.
    Sen, S., Smeby, R. R., Bumpus, F. M.: Renin in rats with spontaneous hypertension. Circ. Res.31, 876–880 (1972)PubMedGoogle Scholar
  19. 19.
    Weinberger, M. H., Ramsdell, J. W., Bosner, D. R., et al.: Effect of chlorothiazide and sodium on vascular responsiveness to angiotensin II. Am. J. Physiol.223, 1049–1052 (1972)PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • A. Röckel
    • 1
  • A. Brand
    • 1
  • W. Bechinger
    • 1
  • A. Heidland
    • 1
  1. 1.Department of NephrologyMedical University HospitalWürzburgFederal Republic of Germany

Personalised recommendations