Skip to main content
Log in

Inhibition of smooth muscle cell proliferation and endothelial permeability with flunarizine in vitro and in experimental atheromas

  • Original Papers
  • Published:
Research in Experimental Medicine

Summary

Repeated weak electrical stimulations of rabbit carotid artery walls with implanted electrodes cause intimal proliferations of smooth muscle cells (SMC) and lead to fribromuscular plaques beneath the anode. If the animals receive a cholesterol-enriched diet the plaques become typical atheromas. The endothelial lining is maintained. The procedure for the production of an atheroma with 11 ± 4 layers of SMC lasts 4 weeks. Addition of the calcium antagonist Flunarizine to the food during the stimulation periods inhibits the growth of the plaque. The inhibition is dose-dependent.

Whether the drug inhibits atherogenesis by direct action on SMC or via an effect on permeation of macromolecules through the endothelium has been studied by measurement of (1) peroxidase (MW 40,000 dalton) permeability through the stimulated endothelium of the artery and (2) the inhibitory effects of Flunarizine on cultures of arterial SMC.

Endothelial permeability increases for some hours after stimulation mainly beneath the anode. Flunarizine inhibits the permeation of peroxidase through the endothelial lining for the most part by its action on intercellular transport. The drug also inhibits the growth of SMC in mass cultures and clone cultures. The inhibition of proliferation is not specific for SMC. Skin fibroblasts obtained from the same animals as the artery smooth muscle cells are also inhibited in mass cultures and clone cultures.

From the results it can be concluded that Flunarizine exerts its inhibitory action not only by its effect on the permeation through the endothelial lining but by a combined action on permeability and proliferation of cells in the artery wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams CWM, Bayliss OB, Morgan RS (1977) Permeability in atherosclerosis: Fluorescence test in green light with trypan blue. Atherosclerosis 27:353–359

    PubMed  Google Scholar 

  2. Apfel H, Betz E (1985) Der elektrische Widerstand von Arterienwänden bei Atheromentwicklung. Proceidings of the German-Japanese Congress of Angiology, Heidelberg 1984 (in press)

  3. Baumgartner HR, Studer A (1978) Smooth muscle cell proliferation and migration after removal of arterial endothelium in rabbits. In:Schettler G, Stange E, Wissler RW (eds) Atherosclerosis—is it reversible? Springer, Berlin Heidelberg New York, pp 12–18

    Google Scholar 

  4. Betz E, Hämmerle H (1984) Arterienwandproliferate und Zellkulturen als Indikatoren für Hemmstoffe der Atherogenese. Funkt Biol Med 3:46–55

    Google Scholar 

  5. Betz E, Hämmerle H, Viele D (1984) Ca2+-entry blockers and atherosclerosis. Int Angiol 3:33–42

    Google Scholar 

  6. Betz E, Schlote W (1979) Responses of vessel walls to chronically applied electrical stimuli. Basic Res Cardiol 74:10–20

    PubMed  Google Scholar 

  7. Blumlein SL, Sievers R, Kidd P, Parmley WW (1984) Mechanism of protection from atherosclerosis by Verapamil in the cholesterol-fed rabbit. Am J Cardiol 54:884–889

    PubMed  Google Scholar 

  8. Borgers M, Ghoos-Thoné F, Van Nueten J (1980) Effects of Flunarizine in the distribution of calcium in vascular smooth muscle. Blood Vessels 17:123

    PubMed  Google Scholar 

  9. Boynton AL, Whitfield JF (1976) Different calcium requirements for proliferation of conditionally and unconditionally tumorigenic mouse cells. Proc Natl Acad Sci USA 73:1651–1654

    PubMed  Google Scholar 

  10. Campbell GR, Chamley-Campbell JH (1981) Smooth muscle phenotypic modulation: Role in atherosclerosis. Med Hypotheses 7:729–735

    PubMed  Google Scholar 

  11. Campbell GR, Chamley-Campbell JH (1981) The cellular pathobiology of atherosclerosis. Pathology 13:423–440

    PubMed  Google Scholar 

  12. Clopath P (1978) Arteriosclerotic and atherosclerotic lesions induced in swine by single and repeated endothelial cell injury. Artery 4:275–288

    Google Scholar 

  13. Clowes AW, Reidy MA, Clowes MM (1983) Kinetics of cellular proliferation after arterial injury. I. Smooth muscle growth in the absence of endothelium. Labor Invest 49:327–333

    Google Scholar 

  14. Dulbecco R, Elkington J (1975) Induction of growth in resting fibroblastic cell cultures by Ca++. Proc Natl Acad Sci USA 72:1584–1588

    PubMed  Google Scholar 

  15. Edidin M (1970) A rapid quantitative fluorescence assay for cell damage by cytotoxic antibodies. J Immunol 104:1303–1306

    PubMed  Google Scholar 

  16. Eitel W, Schmid G, Schlote W, Betz E (1980) Early arteriosclerotic changes of the carotid artery wall induced by electrostimulation. A study by scanning and transmission electron microscopy. Pathol Res Pract 170:211–229

    Google Scholar 

  17. Emanuel MB (1979) Specific calcium antagonism on the treatment of peripheral vascular disease. Angiology 30:454

    PubMed  Google Scholar 

  18. Fleckenstein A (1984) Calcium antagonism: History and prospects for a multifaceted pharmacodynamic principle. In: Opie LH (ed) Calcium antagonists and cardiovascular disease (Perspectives in cardiovascular research, vol 9). Raven Press, New York, pp 9–28

    Google Scholar 

  19. Forssmann WG (1969) A method for in vivo diffusion tracer studies combining perfusion fixation with intravenous tracer injection. Histochemie 20:277–286

    PubMed  Google Scholar 

  20. Friedman M, Byers S (1963) Endothelial permeability in atherosclerosis. Arch Pathol 76:111–117

    Google Scholar 

  21. Gerrity RG, Richardson M, Schwartz CJ (1977) The morphologic basis of arterial endothelial permeability: Some ultrastructural aspects of the Evans blue model. In: Manning GW, Haust MD (eds) Advances in experimental medicine and biology, vol 82: Atherosclerosis. Metabolic morphologic, and clinical aspects. Plenum Press, New York London, pp 952–958

    Google Scholar 

  22. Ginsburg R, Davis K, Bristow MR, McKennett K, Kodsi SR, Billingham ME, Schroeder JS (1983) Calcium antagonists suppress atherogenesis in aorta but not in the intramural coronary arteries of cholesterol-fed rabbits. Labor Invest 49:154–158

    Google Scholar 

  23. Gotlieb AI (1982) Smooth muscle and endothelial cell function in the pathogenesis of atherosclerosis. Can Med Assoc J 126:903–908

    PubMed  Google Scholar 

  24. Guyton JR, Rosenberg RD, Clowes AW, Karnovsky MJ (1980) Inhibition of rat aterial smooth muscle cell proliferation by heparin. In vivo studies with anticoagulant and nonanticoagulant heparin. Circul Res 46:625–634

    Google Scholar 

  25. Harris PJ (1981) Calcium regulation of cell cycle events. In: Zimmerman AM, Forer A (eds) Mitosis/cytokinesis, cell biology. Academic Press, New York, pp 29–57

    Google Scholar 

  26. Haust MD (1977) Early permeability changes in human atherosclerotic lesions. Prog Biochem Pharmacol 13:203–207

    PubMed  Google Scholar 

  27. Henry PD, Bentley KI (1981) Suppression of atherogenesis in cholesterol-fed rabbit treated with Nifedipine. J Clin Invest 68:1366–1369

    PubMed  Google Scholar 

  28. Hladovec J, DeClerk F (1981) Protection by Flunarizine against endothelial cell injury in vivo. Angiology 32:448–462

    PubMed  Google Scholar 

  29. Ingerman-Wojenski CM, Sedar AW, Nissenbaum M, Silver MJ, Klurfeld DM, Kritchesvsky D (1983) Early morphological changes in the endothelium of a peripheral artery of rabbits fed an atherogenic diet. Exp Mol Pathol 38:48–60

    PubMed  Google Scholar 

  30. Jellinek H (1974) Arterial lesions and arteriosclerosis. Akadem Kiado, Budapest; Plenum Press, London New York

    Google Scholar 

  31. Katocs AS, Schaffer SA (1982) Antiatherogenic activity of cetaben sodium, sodium P-(hexadecylamino) benzoate, in the aortae of hypercholesteremic rabbits subjected to aortic endothelial cell desquamation. Artery 11:192–206

    PubMed  Google Scholar 

  32. Kim DN, Lee KT, Schmee J, Thomas WA (1983) Anti-proliferative effect of pyridinolcarbamate and of aspirin in the early stages of atherogenesis in swine. Atherosclerosis 48:1–13

    PubMed  Google Scholar 

  33. Kramsch DM, Aspen AJ, Apstein CS (1980) Suppression of experimental atherosclerosis by the Ca++-antagonist Lanthanum. J Clin Invest 65:967–981

    PubMed  Google Scholar 

  34. Kramsch DM, Aspen AJ, Rozler LJ (1981) Atherosclerosis: Prevention by agents not affecting abnormal levels of blood lipids. Science 213:1511–1512

    PubMed  Google Scholar 

  35. Kramsch DM, Chan CT (1978) The effect of agents interfering with soft tissue calcification and cell proliferation on calcific fibrous-fatty plaques in rabbits. Circul Res 42:562–571

    Google Scholar 

  36. Kramsch DM, Chan CT, Aspen AJ, Wells H (1978) Prevention and therapy of induced atherosclerosis in rabbits and monkeys. In: Hauss WH, Wissler RW, Lehmann R (eds) State of prevention and therapy in human arteriosclerosis and in animal models. Westdeutscher Verlag, Opladen, pp 153–172

    Google Scholar 

  37. Lindner V (1984) Permeabilitätsänderungen der Arterienwand im Initialstadium experimenteller Atherosklerose. Dissertation, Tübingen

  38. Moscatelli D, Rubin H (1977) Hormonal control of hyaluronic acid production in fibroblasts and its relation to nucleic acid and protein synthesis. J Cell Physiol 91:79–88

    PubMed  Google Scholar 

  39. Onoda JM, Sloane BF, Honn KV (1984) Antithrombogenic effects of calcium channel blockers: Synergism with prostacyclin and thromboxane synthase inhibitors. Thromb Res 34:367–378

    PubMed  Google Scholar 

  40. Robert AM, Miskulin M, Godeau G, Tixier JM, Milhaud G (1982) Action of calcitonin on the atherosclerotic modifications of brain microvessels induced in rabbits by cholesterol feeding. Exp Molec Pathol 37:67–73

    Google Scholar 

  41. Rodgers JB, Kyriakides EC, Kapuscinska B, Peng SK, Bochenek WJ (1983) Hydrophobic surfactant treatment prevents atherosclerosis in the rabbit. J Clin Invest 71:1490–1494

    PubMed  Google Scholar 

  42. Ross R, Glomset JA (1976) The pathogenesis of atherosclerosis. New Engl J Med 295:420–425

    PubMed  Google Scholar 

  43. Ross R, Glomset JA, Harker L (1977) Response to injury and atherogenesis. Am J Pathol 86:675–684

    PubMed  Google Scholar 

  44. Ross R, Glomset JA, Harker L (1978) The response to injury and atherogenesis: The role of endothelium and smooth muscle. Atheroscler Rev 3:69–75

    Google Scholar 

  45. Roth J, Betz E, Schlote W (1980) Einfluß von 2-Äthyl-3-(4-hydroxybenzoyl)-benzofuran (Benzaron) auf die experimentell erzeugte Atheromatose. Arzneimittelforsch 30:1897–1902

    PubMed  Google Scholar 

  46. Rotman B, Papermaster BW (1966) Membrane properties of living mammalian cells as studied by enzymatic hydrolysis of fluoregenic esters. Proc Natl Acad Sci USA 55:134–141

    PubMed  Google Scholar 

  47. Schaub RG, Simmons CA (1984) Medial smooth muscle cell proliferation in the balloon injured rabbit aorta: Effect of thiazole compound with platelet inhibitory activity. Thromb Haemost 51:75–78

    PubMed  Google Scholar 

  48. Scheffé H (1953) A method for jugding all contrasts in the analysis of variance. Biometrika 40:87–104 (cited from Sachs L: Angewandte Statistik 1984. Springer Berlin Heidelberg New York)

    Google Scholar 

  49. Schwartz SM (1980) Role of endothelial integrity in atherosclerosis. Artery 8:305–314

    Google Scholar 

  50. Schwartz CJ, Gerrity RG, Lewis LJ (1978) Arterial endothelial structure and function with particular reference to permeability. Atheroscler Rev 3:109–124

    Google Scholar 

  51. Seuter F, Sitt R, Busse WD (1980) Experimentally induced thromboatherosclerosis in rats and rabbits. Folia Angiol 28:85–87

    Google Scholar 

  52. Sezzi ML, Zupi G, DeLuca G, Materazzi M, Bellelli L (1984) Effects of a calciumantagonist (Flunarizine) on the in vitro growth of B 16 mouse melanoma cells. Anticancer Res 4:229–243

    PubMed  Google Scholar 

  53. Shimamoto T, Yamashita Y, Numano F, Sunaga T (1969) The endothelial cell damage of preatheromatous and atheromatous lesions by scanning electron microscope. Proc Jpn Acad 45:761–766

    Google Scholar 

  54. Spaet TH, Stemerman MB, Veith FJ, Lejnieks I (1975) Intima injury and regrowth in the rabbit aorta. Medial smooth muscle cells as a source of neointima. Circul Res 36:58–70

    Google Scholar 

  55. Stary HC (1980) Changes in intimal smooth muscle phenotype in human and non-human primate atherosclerosis and after atherosclerosis regression. Folia Angiol 28:72–75

    Google Scholar 

  56. Steinke A, Netuschil L, Riethe P (1983) Lebendzellzahlbestimmung kariogener Mikroorganismen mit Hilfe der Messung ihres ATP-Gehaltes im Biolumineszenzverfahren — eine methodenkritische Betrachtung. Dtsch Zahnärztl Z 38:918–920

    Google Scholar 

  57. Tiell ML, Sussman II, Gordon PB, Saunders RN (1983) Suppression of fibroblast proliferation in vitro and of myointimal hyperplasia in vivo by the triazolopyrimidine Trapidil. Artery 12:33–50

    PubMed  Google Scholar 

  58. Van Nueten JM, Van Beek J, Janssen PAJ (1978) Effect of Flunarizine on calciuminduced responses of peripheral vascular smooth muscle. Arch Int Pharmacodyn Ther 232:42

    PubMed  Google Scholar 

  59. Van Nueten JM, Wellens D (1979) Mechanisms of vasodilatation and antivasoconstriction. Angiology 30:440

    PubMed  Google Scholar 

  60. Viele D, Betz E (1985) Effect of the calcium entry blocker, Flunarizine on ruthenium red uptake by endothelial cells following acute electrical stimulation of rabbit carotid arters. Basic Res Cardiol 80:58–65

    Google Scholar 

  61. Wadsworth RM, Moss JP (1982) Time course of the effect of Flunarizine on rabbit isolated vascular muscle. Eur J Pharmacol 85:207–209

    PubMed  Google Scholar 

  62. Wissler RW (1968) The arterial medial cell, smooth muscle of multifunctional mesenchyme? A Atheroscler Res 8:201–213

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Betz, E., Hämmerle, H. & Strohschneider, T. Inhibition of smooth muscle cell proliferation and endothelial permeability with flunarizine in vitro and in experimental atheromas. Res. Exp. Med. 185, 325–340 (1985). https://doi.org/10.1007/BF01851958

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01851958

Key words

Navigation