Skip to main content
Log in

Left ventricular enzyme activities of the energy-supplying metabolism in Goldblatt-II rats

  • Original Papers
  • Published:
Research in Experimental Medicine

Summary

The hypertrophied left ventricles of renovascular hypertensive Wistar rats were examined for several enzyme activities 4–6 and 8–12 weeks after operation (Goldblatt-II), and compared with controls. The activities of β-hydroxyacyl-CoA dehydrogenase in hypertrophied myocardial tissue were found to be markedly diminished, as were those of citrate synthase, although to a lesser degree. In both stages of left ventricular hypertrophy hexokinase activity was considerably increased, whereas that of lactate dehydrogenase was only initially slightly elevated. Both enzymes showed an altered isoenzyme composition. The possible reasons and consequences of these changes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CS:

citrate synthase (E.C.4.1.3.7)

HOADH:

β-hydroxy-acyl-CoA dehydrogenase (E.C.1.1.1.35)

HK:

hexokinase (E.C.2.7.1.1)

LDH:

lactate dehydrogenase (E.C.1.1.1.27)

ATPase:

adenosine triphosphatase (E.C.3.6.1.3)

SDH:

succinate dehydrogenase (E.C.1.3.99.1)

References

  1. Bergmeyer HU (1974) Methoden der enzymatischen Analyse. Verlag Chemie, Weinheim, pp 503–504

    Google Scholar 

  2. Bishop SP, Altschuld RA (1970) Increased glyocolytic metabolism in cardiac hypertrophy and congestive failure. Am J Physiol 218:153–159

    PubMed  Google Scholar 

  3. Boll MP (1974) Untersuchungen zur Wechselwirkung zwischen der Lactatdehydrogenase und ihren Antikörpern. Dissertation, Universität Bochum FRG

  4. Braimbridge MV, Darracott S, Chayen J, Bitensky L (1973) A cellular chemical comparison of left ventricular wall myocardium and papillary muscle in man. J Thorac Cardiovasc Surg 65:722–726

    PubMed  Google Scholar 

  5. Dart CH, Holloszy JO (1969) Hypertrophied non-failing rat heart. Circ Res 25:245–235

    PubMed  Google Scholar 

  6. Dietz AA, Lubrano T (1967) Separation and quantitation of lactic dehydrogenase isoenzymes by disc electrophoresis. Anal Biochem 20:246–257

    PubMed  Google Scholar 

  7. Dowell RT (1978) Transmural citrate synthase and lactate dehydrogenase levels in hypertrophied rat left ventricle. Proc Soc Exp Biol Med 158:599–603

    PubMed  Google Scholar 

  8. Ebrecht G, Rupp H, Jacob R (1982) Alterations of mechanical parameters in chemically skinned preparations of rat myocardium as a function of isoenzyme pattern of myosin. Basic Res Cardiol 77:220–234

    PubMed  Google Scholar 

  9. Falkenberg F (1971) Die Isoenzyme der Lactatdehydrogenase als Ursache für unspezifische Tetrazoliumsalz-Anfärbungen in Gelzymogrammen und die Isoenzyme der Hexokinase aus Schweinegeweben. Isolierung, biochemische und immunologische Charakterisierung. Dissertation Universität Bochum, FRG

  10. Gülch RW (1980) The effect of elevated chronic loading on the action potential of mammalian myocardium. J Mol Cell Cardiol 12:415–420

    PubMed  Google Scholar 

  11. Hagmann B (1977) Enzymhistochemische Untersuchungen am Innenohr des Frosches,Rana temporavia. Dissertation, Universität Tübingen, FRG

  12. Inamdar AN, Bing OHL, Messer JV (1971) Lactate dehydrogenase isoenzymes in rats with left ventricular hypertrophy. Res Commun Pathol Pharmacol 2:52–61

    Google Scholar 

  13. Jacob R, Kissling G (1981) Left ventricular dynamics and myocardial function in Goldblatt hypertension of the rat. Biochemical, morphological, and electrophysiological correlates. In: Strauer BE (ed) The heart in hypertension. Springer, Berlin, pp 89–107

    Google Scholar 

  14. Katzen HM, Soderman DD, Wiley CE (1970) Multiple forms of hexokinase. J Biol Chem 245:4081–4096

    PubMed  Google Scholar 

  15. Kissling G, Gassenmaier T, Wendt-Gallitelli MF (1977) Pressure-volume relations, elastic modulus, and contractile behaviour of the hypertrophied left ventricle of rats with Goldblatt II hypertension. Pflügers Arch 369:213–221

    Google Scholar 

  16. Kubista V, Kubistova J, Pette D (1971) Thyroid hormone-induced changes in the enzyme activity pattern of energy-supplying metabolism of fast (white), slow (red), and heart muscle of the rat. Eur J Biochem 18:553–560

    PubMed  Google Scholar 

  17. Lowry OH, Rosebrough NJ, Farr AL (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    PubMed  Google Scholar 

  18. McMillin-Wood J, Wolkowicz PE, Chu A, Tate CA, Goldstein MA, Entman ML (1980) Calcium uptake by two preparations of mitochondria from heart. Biochim Biophys Acta 591:251–265

    PubMed  Google Scholar 

  19. Medugorac I (1980) Collagen content in different areas of normal and hypertrophied rat myocardium. Cardiovasc Res 14:551–554

    PubMed  Google Scholar 

  20. Medugorac I, Jacob R (1976) Concentration and adenosinetriphosphatase activity of left ventricular actomyosin in Goldblatt rats during the compensatory stage of hypertrophy. Hoppe-Seylers Z Physiol Chem 357:1495–1503

    PubMed  Google Scholar 

  21. Meerson FZ, Javich MP (1982) Isoenzyme pattern and activity of myocardial creatine phosphokinase under heart adaptation to prolonged overload. Basic Res Cardiol 77:349–358

    PubMed  Google Scholar 

  22. Meerson FZ, Larionov NP (1969) The role of glycolysis in the energetic supply for the contractile function of hypertrophic heart. Kardiologija 9:17–25

    Google Scholar 

  23. Meerson FZ, Spiritchev VB, Pshennikova MG, Djachova LV (1967) The role of the pentosephosphate pathway in adjustment of the heart to a high load and the development of myocardial hypertrophy. Experientia 23:530–532

    PubMed  Google Scholar 

  24. Moravec J (1980) Intracellular oxygen utilization in mechanically overloaded rat heart. Basic Res Cardiol 75:193–198

    PubMed  Google Scholar 

  25. Müller W (1974) Temporal progress of muscle adaptation to endurance training in hind limb muscles of young rats. Cell Tissue Res 156:61–87

    PubMed  Google Scholar 

  26. Nagano M, Kogure T, Kawamura M, Tomizuka S, Kawanishi M, Aoki H (1968) Enzyme activity in the myocardium in experimental hypertension. Jpn Heart J 9:57–63

    PubMed  Google Scholar 

  27. Nie NH, Hull CH, Jenkins JG, Steinbrenner K, Bent DH (1975) Statistical package for the social sciences, 2nd edn. McGraw-Hill, New York, pp 181–193, 267–275, 293–300

    Google Scholar 

  28. Novy H, Frings HD, Walcher A, Tenderich L (1959) Proteinzusammensetzung des Myokards bei experimenteller Herzhypertrophie. Z Ges Exp Med 131:478–492

    Google Scholar 

  29. Palmer JW, Tandler B, Hoppel CL (1977) Biochemical properties of subsarcolemmal and interfibrillar mitochondria isolated from rat cardiac muscle. J Biol Chem 252:8731–8739

    PubMed  Google Scholar 

  30. Rabinowitz M, Zak R (1972) Biochemical and cellular changes in cardiac hypertrophy. Ann Rev Med 23:245–262

    PubMed  Google Scholar 

  31. Reibel DK, Uboh CE, Kent RL (1983) Altered coenzyme A and carnitine metabolism in pressure-overload hypertrophied hearts. Am J Physiol 244:H839-H843

    PubMed  Google Scholar 

  32. Revis NW, Cameron AJV (1979) Metabolism of lipids in experimental hypertrophic hearts of rabbits. Metabolism 28:601–613

    PubMed  Google Scholar 

  33. Sack DW, Cooper G, Harrison CE (1977) The role of Ca++-ions in the hypertrophied myocardium. Basic Res Cardiol 72:268–273

    PubMed  Google Scholar 

  34. Schneider D, Urbaszek W (1974) Biochemisch-histochemische Befunde bei Herzhypertrophie sowie bei akuter und chronischer Herzinsuffizienz. Z Ges Inn Med 29:133–142

    PubMed  Google Scholar 

  35. Srere PA (1969) Citrate synthase. In: Lowenstein JM (ed) Methods in enzymology, vol 13. Academic Press, New York, pp 3–11

    Google Scholar 

  36. Thiedemann KU, Holubarsch C, Medugorac I, Jacob R (1983) Connective tissue content and myocardial stiffness in pressure overload hypertrophy. A combined study of morphologic, morphometric, biochemical, and mechanical parameters. Basic Red Cardiol 78:140–155

    Google Scholar 

  37. Tomita K (1966) Studies on myocardial protein metabolism in cardiac hypertrophy. Jpn Heart J 7:566–589

    PubMed  Google Scholar 

  38. Valadares JRE, Singhal RL, Parulekar MR, Beznak M (1969) Influence of aortic coartation on myocardial glucose-6-phosphate dehydrogenase. Can J Physiol Pharmacol 47:388–391

    PubMed  Google Scholar 

  39. Vihert AM, Pozdyunina NM (1969) Changes in enzyme activity and electrolyte content in the myocardium in experimental myocardial hypertrophy and insufficiency. Virchows Arch [Pathol Anat] 347:44–56

    Google Scholar 

  40. Walpurger G, Anger H (1970) Die enzymatische Organisation des Energiestoffwechsels im Rattenherzen nach Schwimm- und Lauftraining. Z Kreislaufforsch 59:438–449

    PubMed  Google Scholar 

  41. Wendt-Gallitelli MF, Jacob R (1977) Time course of electron-microscopic alterations in the hypertrophied myocardium of Goldblatt rats. Basic Res Cardiol 72:209–213

    PubMed  Google Scholar 

  42. Wittels B, Spann JF (1968) Defective lipid metabolism in the failing heart. J Clin Invest 47:1787–1794

    PubMed  Google Scholar 

  43. Wollenberger A, Kleitke B, Raabe G (1963) Some metabolic characteristics of mitochondria from chronically overloaded, hypertrophied hearts. Exp Mol Pathol 2:251–260

    PubMed  Google Scholar 

  44. York JW, Penney DG, Weeks TA, Stagno PA (1976) Lactate dehydrogenase changes following several cardiac hypertrophic stresses. J Appl Physiol 40:923–926

    PubMed  Google Scholar 

  45. Zak R, Rabinowitz M (1979) Molecular aspects of cardiac hypertrophy. Ann Rev Physiol 41:539–552

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koehler, U., Medugorac, I. Left ventricular enzyme activities of the energy-supplying metabolism in Goldblatt-II rats. Res. Exp. Med. 185, 299–307 (1985). https://doi.org/10.1007/BF01851955

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01851955

Key words

Navigation