Advertisement

Research in Experimental Medicine

, Volume 185, Issue 6, pp 495–502 | Cite as

Influence of atropine on taste-stimulated parotid secretion

  • T. Kemmer
  • P. Malfertheiner
Original Papers

Summary

Elemental taste qualities as “sour” and “sweet” showed different stimulatory effects on the parotid secretion when given in concentrations with comparable gustatory intensity. Sweet (fructose 10%) exerted an adrenergic-like activity, sour (citric acid 1%) a more parasympathetic-like influence on parotid secretion. The vagal pathway of the gustatory stimuli was further investigated by the simultaneous infusion of atropine sulfate (17 µg/kg per 30 min). Atropine reduced the flow rate during sour and sweet stimulation in the range of 500% and 300%. In 60% of the test persons parotid flow rate could not be totally depressed in any of three 10-min sampling fractions by atropine when a sour stimulus was applied; in these subjects protein and amylase concentration increased significantly. Following fructose stimulation the flow rate was totally depressed in all subjects by atropine in the 20- and 30-min sampling fractions. In the first 10-min fraction protein and amylase concentration were not influenced by atropine. The cholinergic pathway seems to be responsible primarily for the flow rate and has further different modulating influence on the stimulatory effect of the individual taste qualities.

Key words

Taste Sweet Sour Parotid gland Atropine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arglebe C, Chilla R, Opaitz M (1976) Age-dependent distribution of isoamylases in human parotid saliva. Clin Otolaryngol 1:249–256PubMedGoogle Scholar
  2. 2.
    Arglebe C (1981) Biochemistry of human saliva. Adv Otorhinolaryngol 26:97–234PubMedGoogle Scholar
  3. 3.
    Babad H, Ben-Zvi R, Bdolah A, Schramm M (1967) The mechanisms of enzyme secretion by the cell, vol 4. Effects of inducers, substrates, and inhibitors on amylase secretion by rat parotid slices. Eur J Biochem 1:96–101PubMedGoogle Scholar
  4. 4.
    Batzri S, Selinger Z (1973) Enzyme secretion mediated by the epinephrine β-receptor in rat parotid slices. Factors governing efficiency of the process. J Biol Chem 248:356–360PubMedGoogle Scholar
  5. 5.
    Baum BJ (1981) Evaluation of stimulated parotid saliva flow rate in different age groups. J Dent Res 60:1292–1296PubMedGoogle Scholar
  6. 6.
    Beebe-Center JG, Waddell D (1948) A general psychological scale of taste. J Psychol 26:517–524Google Scholar
  7. 7.
    Bernfeld P (1958) Amylases, alpha and beta. In: Colowick SP, Kaplan NO (eds) Methods in enzymology, vol 1. Academic Press, New York, pp 149–158Google Scholar
  8. 8.
    Chilla R, Arold R (1975) Über Sekretionsmechanismen der Ohrspeicheldrüse und deren medikamentöse Beeinflussung. HNO 23:229–232PubMedGoogle Scholar
  9. 9.
    Dawes C, Jenkins GN (1964) The effects of different stimuli on the composition of saliva in man. J Physiol 170:86–100PubMedGoogle Scholar
  10. 10.
    Dawes C (1969) The effect of flow rate and duration of stimulation on the concentrations of protein and the main electrolytes in human parotid saliva. Arch Oral Biol 14:277–294PubMedGoogle Scholar
  11. 11.
    Dawes C (1972) Circadian rhythms in human salivary flow rate and composition. J Physiol 220:529–545PubMedGoogle Scholar
  12. 12.
    Durrant ML, Royston P (1978) The effects of preloads of varying energy density and methyl cellulose on hunger, appetite, and salivation. Proc Nutr Soc 37:87 [Abstr]PubMedGoogle Scholar
  13. 13.
    Ericson S (1971) The importance of sialography for the determination of the parotid flow. The normal variation in salivary output in relation to the size of gland at stimulation with citric acid. Acta Otolaryngol 72:437–444PubMedGoogle Scholar
  14. 14.
    Ferguson DB, Fort A, Elliott AL, Potts AJ (1973) Circadian rhythms in human parotid saliva flow rate and composition. Arch Oral Biol 18:1155–1173PubMedGoogle Scholar
  15. 15.
    Funakoshi M, Kawamura Y (1967) Relations between taste qualities and parotid gland secretion rate. In: Hayashi T (ed) Olfaction and taste, vol 2. Pergamon Press, Oxford London New York Paris, pp 281–287Google Scholar
  16. 16.
    Gilman S, Thornton R, Miller D, Biersner R (1979) Effects of exercise stress on parotid gland secretion. Horm Metab Res 11:454PubMedGoogle Scholar
  17. 17.
    Goodman L, Gillman A (1965) The pharmacological basis of therapeutics. MacMillan, New YorkGoogle Scholar
  18. 18.
    Kemmer T, Malfertheiner P (1983) Der differenzierte Einfluß der Geschmacksqualitäten „süß“ und „sauer“ auf die Parotissekretion. Res Exp Med (Berl) 183:35–46Google Scholar
  19. 19.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  20. 20.
    Malfertheiner P, Fussgänger R, Minne H, Ditschuneit H (1980) Influence of gastrointestinal hormones on human salivary secretion. Horm Metab Res 12:485PubMedGoogle Scholar
  21. 21.
    Malfertheiner P (1981) Gastrointestinale Hormone und Speichelsekretion. Diagn Intensivther 6:207–210Google Scholar
  22. 22.
    Mandel ID, Katz R, Zengo A, Kutscher AH, Greenberg RA, Katz S, Sharf R, Pintoff A (1967) The effect of pharmacologic agents on salivary secretion and composition in man. I. Pilocarpine, atropine, and anticholinesterases. J Oral Ther 4:192–199Google Scholar
  23. 23.
    Pohto P, Ahtee L (1966) Effect of atropine, methylatropine, methylscopolamine, and pilocarpine on salivary secretion and heart rate in man. Ann Med Exp Fenn 44:411–414PubMedGoogle Scholar
  24. 24.
    Rauch J, McCleve D (1966) Physiopathology of neural and humoral regulation of the salivary glands. Int Dent J 11:385Google Scholar
  25. 25.
    Schneyer LH, Pigman W, Hanahan LB, Gilmore RW (1956) Rate of flow of human parotid, sublingual, and submaxillary secretions during sleep. J Dent Res 35:109–114PubMedGoogle Scholar
  26. 26.
    Schramm M, Ben-Zvi R, Bdolah A (1965) Epinephrine-activated amylase secretion in parotid slices and leakage of the enzyme in the cold. Biochem Biophys Res Commun 18:446–451PubMedGoogle Scholar
  27. 27.
    Schramm M, Selinger Z (1974) The function of alpha- and beta-adrenergic receptors and a cholinergic receptor in the secretory cell of the rat parotid gland. In: Ceccarelli, Clementi, Meldolesi (eds) Advances in cytopharmacology, vol 2. Raven Press, New YorkGoogle Scholar
  28. 28.
    Shannon IL (1966) Climatological effects on human parotid gland function. Arch Oral Biol 11:451–453PubMedGoogle Scholar
  29. 29.
    Shannon IL, Chauncey HH (1967) Hyperhydration and parotid flow in man. J Dent Res 46:1028–1031PubMedGoogle Scholar
  30. 30.
    Shannon IL, Suddick RP, Chauncey HH (1969) Effect of atropine-induced flow rate depression on the composition of unstimulated human parotid fluid. Arch Oral Biol 14:761–770PubMedGoogle Scholar
  31. 31.
    Skurk A, Mlynski G, Fendel K (1971) Methoden der quantitativen Eiweißbestimmung im menschlichen Parotisspeichel. Acta Oto Laryngol 71:71–74Google Scholar
  32. 32.
    Vogt K, Zahl J (1973) Über Einflüsse von Diabetes mellitus und Geschlecht auf die Sekretion der Glandula parotis des Menschen. Arch Klin Exp Ohren Nasen Kehlkopfheilkd 203:310–324PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • T. Kemmer
    • 1
  • P. Malfertheiner
    • 1
  1. 1.Abt. Innere Medizin II, Stoffwechsel, Ernährungswissenschaften und GastroenterologieUniversität UlmUlm/DonauFederal Republic of Germany

Personalised recommendations