Skip to main content
Log in

Möglichkeiten und Grenzen des temporären Leberersatzes durch Hämoperfusion mit biologischem Material

Possibilities and limits of temporary hepatic assistance by hemoperfusion with biologic materials

  • Original Papers
  • Published:
Research in Experimental Medicine

Summary

For temporary hepatic assistance we used 200 g porcine liver pieces (5×5×5 mm3) which were perfused for 6 h with 11 swine blood.

ATP and energy reserve values reached their maxima 30 min after starting perfusion, remained unchanged for 120 min, and decreased thereafter. Following 30 min of perfusion energy charge values increased from 0.260±0.110 µmol/g to 0.560±0.093 µmol/g (normal value; 0.854 ± 0.022 µmol/g) and thereafter remained unchanged for 6 h. These results suggest that good energy regulation was maintained in the liver pieces. The small liver cubes showed excellent ammonia and phenol detoxication. However, the liver pieces were not found to be able to conjugate serum bilirubin, which might have been caused by a lack of this anatomic pathway in our model.

Levels of hepatic and lytic enzymes in the perfusate increased with the time of perfusion, though they were relatively low as compared to levels in patients with acute hepatic failure. The concentration of free fatty acids in the perfusate, which are known to potentiate hepatic coma, increased slightly. However, methyl mercaptane remained constant during perfusion. Concentrations of nearly all amino acids rose during 6-h perfusion due to damage of hepatic tissues, but the molar ratio of the branched chain amino acid to aromatic amino acid was not changed.

These results suggest that liberated substances from the damaged liver would not potentiate hepatic encephalopathy. We feel that hemoperfusion over small liver pieces could be a useful method for hepatic assistance.

Zusammenfassung

Als temporären Leberersatz verwendeten wir 5×5×5 mm3 große Schweineleberwürfel, von denen jeweils 200g mit 11 frischem Schweineblut über 6h perfundiert wurden.

ATP und Energie-Reserve erreichten schon 30 min nach Perfusionsbeginn ihren Maximalwert, blieben bis zu 120 min konstant und fielen danach langsam ab. Auch das Energiegleichgewicht hatte sich nach 30 min stabilisiert und war über 6 h unverändert, was auf einen guten Energiehaushalt der Leberstückchen hindeutet. Die Leberwürfel zeigten eine ausgezeichnete Entgiftungsfunktion für Ammoniak und Phenol, jedoch konnte keine Bilirubinglucuronisierung festgestellt werden, was u. E. durch die in unserem Modell fehlende Exkretionsbahn für Galle bedingt war. Die Spiegel der Leberenzyme und der lytischen Enzyme stiegen der Perfusionszeit entsprechend langsam an, jedoch waren sie im Vergleich zu denen bei Patienten mit Leberversagen niedrig und zu vernachlässigen.

Die Konzentration der leberkomapotenzierenden freien Fettsäuren stieg in klinisch bedeutungslosem Maße an, die Methylmerkaptanwerte zeigten jedoch keine Änderung während der Perfusion. Obwohl fast alle Aminosäurekonzentrationen durch den Lebergewebezerfall zunahmen, blieb der molare Quotient (verzweigtkettige Aminosäure zu aramotische Aminosäure) im Laufe der 6stündigen Perfusion konstant. Daraus ist ersichtlich, daß die Zerfallsprodukte der Leberstückchen während dieser Zeit ein Leberkoma wahrscheinlich nicht potenzieren werden. Die Leberstückchenperfusion könnte daher in Zukunft zur Behandlung des Leberkomas erfolgreich angewendet werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Adam H (1965) Adenosine-5′-diphosphate and adenosine-5′-monophosphate. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Academic Press, New York, p 573

    Google Scholar 

  2. Atkinson DE (1968) The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers. Biochemistry 7:4030

    PubMed  Google Scholar 

  3. Brunner G, Scharff P (1978) Untersuchungen über den diagnostischen Wert der Bestimmung von Merkaptanen im Serum bei Lebererkrankungen. Dtsch Med Wochenschr 103:1796

    PubMed  Google Scholar 

  4. Conn H (1973) Current diagnosis and treatment of hepatic coma. Hospital Practice 8:65

    Google Scholar 

  5. Curzon G, Friedel J, Knott PJ (1973) The effect of fatty acids on the binding of tryptophan to plasma proteins. Nature 242:198

    PubMed  Google Scholar 

  6. Fischer B, Kappes E, Holm B, Kurzt J, Haselberger J (1975) Einflüsse freier Serumphenole auf das Gehirn der Katze. Elektrophysiologische Versuche mit p-Hydroxyphenylessigsäure. In: Holm E (Hrsg) Ammoniak und hepatische Enzephalopathie — Biochemie, Elektrophysiologie, Toxikologie. Fischer, Stuttgart New York, S 166

    Google Scholar 

  7. Fischer JE, Baldessarini RJ (1976) Pathogenesis and therapy of hepatic coma. In: Popper H, Schaffner F (eds) Progress in liver diseases, vol V. Grune & Stratton, New York, p 363

    Google Scholar 

  8. Justice P, Hsia DYY (1965) Studies on inhibition of brain 5-hydroxytryptophan decarboxylase by phenylalanine metabolites. Proc Soc Exp Biol Med 118:326

    PubMed  Google Scholar 

  9. Krebs HA, Cornell NW, Lund P, Hems R (1974) Some aspects of hepatic energy metabolism. In: Lundquist F (ed) Regulation of hepatic metabolism. Academic Press, New York, p 549

    Google Scholar 

  10. Lamprecht W, Trautschold I (1965) Adenosine-5′-triphosphate. Determination with hexokinase and glucose-6-phosphate dehydrogenase. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Academic Press, New York, p 543

    Google Scholar 

  11. Levi AJ, Gatmaitan Z, Arias IM (1969) Two hepatic cytoplasmic protein fractions, Y and Z, and their possible role in the hepatic uptake of bilirubin, sulfobromophtalein and other anions. J Clin Invest 48:2156

    PubMed  Google Scholar 

  12. Lie TS (1971) Orthotope Allotransplantation der Schweineleber. Bruns Beitr Klin Chir 218:728

    PubMed  Google Scholar 

  13. Lie TS, Totovic V, Lagace R, Ottersky C, Lee KS (1973) Einfache Methoden zur Konservierung der Schweineleber. I. Dreistündlich intermittierende Perfusion in Hypothermie. Res Exp Med 160:122

    Google Scholar 

  14. Lie TS (1981) Treatment of acute hepatic failure by extracorporeal hemoperfusion over human and baboon liver. In: Brunner G, Schmidt FW (eds) Artificial liver support. Springer, Berlin, p 268

    Google Scholar 

  15. Lie TS, Ukigusa M (1983) Significance of alcaline preservation solutions in liver transplantation. Transpl Proc (in press)

  16. Mans AM, Saunders SJ, Kirsch RE, Biebuyck JF (1979) Correlation of plasma and brain amino acids and putative neurotransmitter alterations during acute hepatic coma in the rat. J Neurochem 32:285

    PubMed  Google Scholar 

  17. Marubayashi S, Takenaka M, Dohi K, Ezaki H, Kawasaki T (1980) Adenine nucleotide metabolism during hepatic ischemia and subsequent blood reflow periods and its relation to organ viability. Transplantation 30:294

    PubMed  Google Scholar 

  18. Mazziotti A, Bernardi M, Antonini L, Dioguardi FS, Bellusci R, Papa V, Tacconi C, Gasbarrini G, Cavallari A, Possati L (1981) Plasma amino acid patterns in experimental acute hepatic failure: Comparison between hepatectomy and liver devascularization in pigs. Surgery 90:527

    PubMed  Google Scholar 

  19. McClain CJ, Zieve L, Doizaki WM, Gilberstadt S, Onstad GR (1980) Blood methanethiol in alcoholic liver disease with and without hepatic encephalopathy. Gut 15:180

    Google Scholar 

  20. Müting D, Keller HE, Kraus W (1970) Quantitative colorimetric determination of free phenols in serum and urine of healthy adults using modified diazoreactions. Clin Chem Acta 27:177

    Google Scholar 

  21. Mutchnik MG, Lerner E, Conn HO (1974) Portal-systemic encephalopathy and portocaval anastomosis: a prospective controlled investigation. Gastroenterology 72:1005

    Google Scholar 

  22. Olumide F, Eliashiv A, Kralios N, Norton L, Eiseman B (1977) Hepatic support with hepatocyte suspensions in a permeable membrane dialyser. Surgery 82:599

    PubMed  Google Scholar 

  23. Schwartz R, Philips GB, Gabuzda GJ Jr, Davidson CS (1953) Blood ammonia and electrolytes in hepatic coma. J Lab Clin Med 42:499

    PubMed  Google Scholar 

  24. Soyer T, Lempinen M, Walker JE, Supanwanid P, Eiseman B (1973) Extracorporeal assist of anhepatic animals with liver slice perfusion. Am J Surg 126:20

    PubMed  Google Scholar 

  25. Stahl J (1963) Studies of the blood ammonia in liver disease. Its diagnostic, prognostic and therapeutic significance. Ann Int Med 58:1

    PubMed  Google Scholar 

  26. Starzl TE, Putnam CW, Groth CG, Corman JL, Taubman J (1975) Alopecia, ascites and incomplete regeneration after 85 to 90 per cent liver resection. Am J Surg 129:587

    PubMed  Google Scholar 

  27. Summerskill WHJ, Wolfe SJ, Davidson CS (1952) The metabolism of ammonia andα-keto acids in liver disease and hepatic coma. J Clin Invest 36:361

    Google Scholar 

  28. Wolf CFW (1980) Cells cultured on artificial capillaries and their use as a liver assist device. Artif Organs 4:279

    Google Scholar 

  29. Zieve L (1975) Metabolic abnormalities in hepatic coma and potential toxins to be removed. In: Williams R, Murray-Lyon IM (eds) Artificial liver support. Pitman Medical, London Tonbridge, p 11

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lie, T.S., Ukigusa, M., Scherf, F.G. et al. Möglichkeiten und Grenzen des temporären Leberersatzes durch Hämoperfusion mit biologischem Material. Res. Exp. Med. 183, 19–33 (1983). https://doi.org/10.1007/BF01851760

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01851760

Key words

Schlüsselwörter

Navigation