Research in Experimental Medicine

, Volume 182, Issue 2, pp 127–137 | Cite as

Experimental hemorrhagic shock in dogs: Standardization

  • E. Vivaldi
  • S. Macinelli
  • B. Günther
Original Papers

Summary

The purpose of the present study was to design a standardized model of hemorrhagic shock in dogs as a prerequisite for future studies on the pathogenesis of this syndrome. Hemorrhagic shock was induced in 86 mongrel dogs submitted to a systemic hypotension of 45 mm Hg by means of a constant pressure reservoir procedure. The following blood volumes (ml/kg) were measured during the evolution of shock: (1) initial bleeding volume, (2) secondary bleeding volume, (3) maximum bleeding volume, (4) automatic reinfusion volume, and (5) duration of the hypotensive period (min). The corresponding mortalities were submitted to a statistical analysis which yielded the following conclusions: (a) the initial, secondary, and maximum bleeding volumes do not correlate with mortality, (b) the duration of the hypotensive period is of only relative importance, and (c) the automatic reinfusion volumes shows a high degree correlation with the fatal outcome.

Key words

Hemorrhagic shock Reservoir model Standardization Dog 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bock KD (1962) Shock. Pathogenesis and therapy. CIBA International Symposium. Springer, Berlin Heidelberg New YorkGoogle Scholar
  2. 2.
    Mills LCV, Moyer JH (1965) Shock and hypotension. Pathogenesis and treatment. The 12th Hahnemann Symposium. Grune & Stratton, New YorkGoogle Scholar
  3. 3.
    Zweifach B, Fronek A (1975) The interplay of central and peripheral factors in irreversible hemorrhagic shock. Prog Cardiovasc Dis 18:147–180PubMedGoogle Scholar
  4. 4.
    Walcott WW (1945) Standardization of experimental hemorrhagic shock. Am J Physiol 143:254–261Google Scholar
  5. 5.
    Walcott WW (1945) Blood volume in experimental hemorrhagic shock. Am J Physiol 143:247–253Google Scholar
  6. 6.
    Lawson H (1944) The measurement of bleeding volume in the dog for studies of blood substitutes. Am J Physiol 140:420–430Google Scholar
  7. 7.
    Schmidt HD, Schmier J (1968) Normotoner hemorrhagischer Schock. Pflügers Arch 298:336–347Google Scholar
  8. 8.
    Fronek A, Witzel T (1974) Hemodynamics of the terminal vascular bed in canine hemorrhagic shock. Surgery 75:408–415PubMedGoogle Scholar
  9. 9.
    Werle JM, Cosey RS, Wiggers CJ (1942) Observations on hemorrhagic hypotension and hemorrhagic shock. Am J Physiol 143:136–420Google Scholar
  10. 10.
    Lamson PD, De Turk WW (1945) Studies on shock induced by hemorrhage. XI. A method for the accurate control of blood pressure. J Pharmacol Exp Therap 83:250–252Google Scholar
  11. 11.
    Arimoto F, Necheles H, Levison SO, Janota M (1945) Hemorrhagic shock: A method for its production and a formula for prognosis. Am J Physiol 143:198–205Google Scholar
  12. 12.
    Kohlstaedt KG, Page IJ (1943) Hemorrhagic hypotension and its treatment by intra-arterial and intravenous infusion of blood. Arch Surg 47:178–191Google Scholar
  13. 13.
    Beck L (1953) Hemorrhagic shock and the effect of adrenergic blocking agent. Doctoral Thesis. University of Western Ontario, London, OntarioGoogle Scholar
  14. 14.
    Vivaldi E (1954) The effect of aureomycin in hemorrhagic shocks. Thesis, University of MichiganGoogle Scholar
  15. 15.
    Hollenberg NK, Waters JR, Toews NR, Davies RO, Nickerson M (1970) Nature of cardiovascular decompensation during hemorrhagic shock. Am J Physiol 219:1476–1482PubMedGoogle Scholar
  16. 16.
    Lillehei RC, Longerbeam JK, Block JH, Manax WG (1964) The nature of irreversible shock. Ann Surg 160:682–708PubMedGoogle Scholar
  17. 17.
    Fronek A (1976) Peripheral factors in irreversible hemorrhagic shock. Physiologist 19:541–551PubMedGoogle Scholar
  18. 18.
    Spiegel MR (1961) Theory and problems of statistics. Schaum, New York, pp 205–213Google Scholar
  19. 19.
    Schefler WC (1969) Statistics for the biological sciences. Addison-Wesley, Reading, Mass, pp 86–95Google Scholar
  20. 20.
    Crow EL, Davis FA, Maxfield MW (1960) Statistical manual. Dover, New York, pp 97–101Google Scholar
  21. 21.
    Jesch F, Sunder-Plassmann L, Messmer K (1973) Die Bedeutung des Uptake im experimentellen hämorrhagischen Schock. Ein Beitrag zur Standardisierung von Schockmodellen. Res Exp Med 159:141–151Google Scholar
  22. 22.
    Kass EH, Porter PJ, McGill MW, Vivaldi E (1973) Clinical and experimental observations on the significance of endotoxemia. J Infect Dis 128:299–302PubMedGoogle Scholar
  23. 23.
    Chien S (1967) Role of the sympathetic nervous system in hemorrhage. Physiol Rev 47:214–288PubMedGoogle Scholar
  24. 24.
    Mellander S, Lewis DH (1963) Effect of hemorrhagic shock on the reactivity of resistance and capacitance vessels and on the capillary filtration transfer in cat skeletal muscle. Circ Res 13:105–118PubMedGoogle Scholar
  25. 25.
    Hollenberg NK, Nickerson M (1970) Changes in pre- and post-capillary resistance in pathogenesis of hemorrhagic shock. Am J Physiol 219:1483–1489PubMedGoogle Scholar
  26. 26.
    Kirchheim H, Baubkus H (1967) Säure-Base-Veränderungen im standardisierten hämorrhagischen Schock. Pflügers Arch 295:293–314Google Scholar
  27. 27.
    Coleman TG, Manning RD Jr, Norman RA Jr, Guyton AC (1974) Control of cardiac output by regional flow distribution. Ann Biomed Engin 2:149–163Google Scholar
  28. 28.
    Rushmer R (1965) Neural factors regulating cardiac output. In: Mills LC, Moyer LH (eds) Shock and hypotension. Grune & Stratton, New York, pp 22–31Google Scholar
  29. 29.
    Selkurt EE, Rothe CF (1961) Critical analysis of traumatic shock models. Fed Proc [Suppl 9] 20:30–37Google Scholar
  30. 30.
    Simeone FA (1961) Critical analysis of models for the study of experimental shock. Fed Proc 20:193–200PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • E. Vivaldi
    • 1
  • S. Macinelli
    • 1
  • B. Günther
    • 1
  1. 1.Depto. de Ciencias Fisiológicas, Facultad de Ciencias Biológicas y de Recursos NaturalesUniversidad de ConcepciónConcepciónChile

Personalised recommendations