Advertisement

Research in Experimental Medicine

, Volume 172, Issue 1, pp 45–61 | Cite as

Xenogene Aortensegmenttransplantationen mit Inzuchtratten

Korrelierte serologische und histologische Untersuchungen zum Abstoßungsmechanismus
  • Ch. Beck
  • A. Thiede
  • H. G. Sonntag
Article
  • 13 Downloads

Zusammenfassung

Aus CDF-Ratten und Meerschweinchen wurden eine syngene Kontrollgruppe (CDF → CDF) und zwei xenogene Versuchsgruppen (Meerschweinchen → CDF-Ratten) gebildet. Die zwei xenogenen Gruppen ergaben sich durch die unterschiedliche Lokalisation der Gefäßtransplantate. Die Gefäßtransplantate wurden entweder heterotop subkutan oder orthotop retroperitoneal eingebracht. Folgende Ergebnisse konnten gewonnen werden:
  1. 1.

    Ein xenogenes Gefäßtransplantat bewirkt einen vom 5. Tag an nachweisbaren stürmischen Antikörpertiteranstieg. Der Antikörpertiterverlauf hat bei Langzeitbeobachtungen ein Maximum am 42. Tag und sinkt dann wieder ab. Histologische Veränderungen sind schon vor dem Antikörpertiteranstieg feststellbar. Das xenogene Gefäßtransplantat wird innerhalb von Stunden azellulär und nach 5–6 Tagen von einem anfangs granulozytär-monozytären, später lymphozytär-plasmazellulären Infiltrat durchsetzt. Dem Untergang des Fasergerüstes folgt eine zunehmende Aneurysmabildung.

     
  2. 2.

    In der gewählten xenogenen Versuchsgruppe kommt der unterschiedlichen Lokalisation bei Betrachtung der humoralen Reaktion keine Bedeutung zu.

     
  3. 3.

    Antikörpertiterverlauf (steiler Anstieg am 5. Tag) nach Transplantation und akute und chronische histologische Veränderungen des übertragenen xenogenen Gewebes (Sofort-Verwerfung und sich differenzierendes zelluläres Infiltrat) sind am ehesten mit einer hyperaktuten immunologisch bedingten Sofortabstoßung erklärbar.

     

Xenogenic transplantation of aortic segments

Korrelated Serological and Histological Investigations of the Rejection Mechanism

Summary

With CDF inbred strain rats and randomly bred guinea pigs one syngenic control group and two xenogenic experimental groups were examined. The two xenogenic groups had different transplantation sites of aortic segments, the first of which was orthotoply retroperitoneal, the second heterotoply subcutanous. The following results were obtained:
  1. 1.

    A xenogenic vessel graft induces a massive production of antibodies after the fifth day, reaching a maximum on the 42nd day, and slowly and continuously decreasing thereafter. The tissue of the graft becomes acellular within 12 to 24h p.op. After 5 to 6 days an infiltrate appears, firstly dominated by granulocyts and monocyts and later by lymphocyts and plasmacells. Following the continuous destruction of the elastic fibres aneurysms grow.

     
  2. 2.

    The two xenogenic groups show that these two transplantation sites have no significance for the humoral response.

     
  3. 3.

    Both the progress of the antibodytiters (strong increase after the fifth day) after transplantation of aortic segments and the acute and chronical histologic changes suggest an immunological mechanism of hyperacute rejection.

     

Key words

Aortic xenograft Immunology Hyperacute Rejection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Abott, C. P., Lindsey, E. S., Creech, O., De Witt, C. W.: A technique for heart transplantation in the rat. Arch. Surg.89, 645–652 (1964)PubMedGoogle Scholar
  2. Abott, C. P., Lindsey, E. S., Creech, O.: The transplanted rat heart: Histologic and electrocardiografic changes. Transplantation3, 432–445 (1965)Google Scholar
  3. Askenase, R. P.: Augmented agglutination of erythrocytes in the presence of macrophages: a new assay for antibody. Immunolgy25, 47–53 (1973)Google Scholar
  4. Brendel, W., Hammer, C., Chaussy, C., Scheder, R., Hingerle, M., Sollinger, H. W., Bose, J.: Classification of xenotransplantation based on biological principles (Preformed natural antibodies in relation to the animal kingdom), Lee, S. (ed.), pp. 117–124. Proc. of the Intern. Microsurgery Soc. (Workshop Rome 1974), San Diego: Human Development East 1974Google Scholar
  5. Busch, G. J., Reynolds, E. D., Galvanek, E. G., Braun, W. E., Dammin, G. J.: Human renal allografts: the role vascular injury in early graft failure. Medicine50, 29–83 (1971)PubMedGoogle Scholar
  6. Catell, V., Jamieson, S. W.: Hyperacute rejection of guinea-pig to rat cardiac xenografts. I. Morphology. J. Path.115, 183–189 (1975)Google Scholar
  7. Coburn, R. J.: Spleen transplantation in the rat. Transplantation8, 86–88 (1969)PubMedGoogle Scholar
  8. Fisher, B., Lee, S.: Microvascular surgical techniques in research with special reference to renal transplantation in the rat. Surgery58, 904–914 (1965)Google Scholar
  9. Gewurz, H., Clark, D. S., Finstad, J., Kelly, W. D., Varco, R. L., Good, R. A., Gabrielsen, A. E.: Role of the complement system in graft rejection in experimental animals and man. Ann. N.Y. Acad. Sci.129, 673–713 (1966)Google Scholar
  10. Gonzales, E., Nathan, P., Miller, B. F.: A method for transplantation of rat kidneys. Ann. New York Academy. Science99, 795–797 (1962)Google Scholar
  11. Hammer, C., Chaussy, C., von Scheel, J., Pongratz, H., Roscher, E., Brendel, W.: Survival times of skin and kidney grafts within different canine species in relation ot their genetic markers. Transpl. Proc.VII, 439–447 (1975)Google Scholar
  12. Kissmeyer-Nielsen, K., Olsen, S., Petersen, V. P., Fjeldborg, O.: Hyperacute rejection of kidney allografts associated with pre-exsisting humoral antibodies against donor cells. Lancet2, 662–665 (1966)PubMedGoogle Scholar
  13. Jamieson, S. W.: Xenograft hyperacute rejection. A new model. Transplantation17, 533–534 (1974)PubMedGoogle Scholar
  14. Land, W., Schilling, A., Aldenhoff, J., Lamerz, R., Pielsticker, K., Mendler, N., Brendel, W.: In vitro studies on the mechanism of hyperacute xenograft rejection. Transplant. Proc.3, 888–890 (1971)PubMedGoogle Scholar
  15. Leder, L. D.: Der Blutlymphozyt. Berlin, Heidelberg, New York: Springer 1967Google Scholar
  16. Lee, S.: An improved technique of renal transplantation in the rat. Surgery61, 771–773 (1967)PubMedGoogle Scholar
  17. Lee, S. H., Fisher, B.: Portocaval shunt in the rat. Surgery50, 668–672 (1961)PubMedGoogle Scholar
  18. Lee, S., Edgington, T. S., Orloff, M. J.: The role of afferent blood supply in regeneration of liver isografts in rats. Surg. Forum19, 360–362 (1968)PubMedGoogle Scholar
  19. Lee, S., Tung, K. T. S., Orloff, M. J.: Testicular transplantation in the rat. Transpl. Proc.3, 586–590 (1971)Google Scholar
  20. Lee, S., Charters, A. C., Chandler, J. G., Orloff, M. J.: A technique for orthotopic liver transplantation in the rat. Transplantation16, 664–669 (1973)PubMedGoogle Scholar
  21. Linn, B. S., Jensen, J. A., Pardo, V., Davies, D., Franklin, L.: Relationship between structural and functional changes in rejecting renal xenograft. Transpl. Proc.3, 527–530 (1971)Google Scholar
  22. McDonald, J. C., Sumaya, C. V., Jacobbi, L. M.: A heterophil system in human renal transplantation IV. Natural immunity and its genetic implications. Transplantation19, 203–209 (1975)Google Scholar
  23. Miller, B. F., Gonzales, E., Wilchins, L. J., Nathan, P.: Kidney transplantation in the rat. Nature194, 309–310 (1962)PubMedGoogle Scholar
  24. Ono, K., Lindsey, E. S.: Improved technique of heart transplantation in rats. J. Thorac. Cardiovasc. Surg.57, 225–229 (1969)PubMedGoogle Scholar
  25. Perper, R. V., Najarian, J. S.: Experimental renal heterotransplantation. II. Closely related species. Transplantation4, 700–712 (1966)PubMedGoogle Scholar
  26. Pinto, M. E., Nelson, R. A.: The effect of antibody and complement on perfused hearts: A model for the study of xenograft rejection phenomenon. Z. Immun.-Forsch.149, 78–93 (1975)Google Scholar
  27. Reemtsma, K.: Heterotransplantation: Theoretical considerations. Transplant. Proc.3, 49–52 (1971)PubMedGoogle Scholar
  28. Reemtsma, K., Mc Cracken, B. H., Schlegel, J. U., Pearl, M. A.: Heterotransplantation of the kidney. Two clinical experiences. Science143, 700–720 (1964)PubMedGoogle Scholar
  29. Russel, P. S.: Modification of runt disease in mice by varions means. In: Transplantation. Ciba. Found., p. 350. Symposium Wolstenholme, G. E. W., Cameron, M. P. Boston: Little, Brown u. Co. 1962Google Scholar
  30. Sachs, L.: Angewandte Statistik. Berlin, Heidelberg, New York: Springer 1973Google Scholar
  31. Schilling, A., Land, W., Pielsticker, K., Aldenhoff, J., Brendel, W.: Experimentelle Xenotransplantation in entfernt stammesverwandten Speziessystemen: Interaktion humoraler Faktoren bei der hyperakuten xenogenen Abstoßung (HXAR) im Ratte → Hund-Modell. Res. exp. Med.165, 79–92 (1975)Google Scholar
  32. Schilling, A., Land, W., Pratschke, E., Pielsticker, K., Brendel, W.: Dominant role of complement in the hyperacute xenograft rejection reaction. Surg., Gyn. Obstet.142, 29–32 (1976)Google Scholar
  33. Sonntag, H. G.: Persönliche Mitteilung 1975Google Scholar
  34. Starzl, T. E., Marchioro, T. L., Peters, G. N., Kirkpatrick, C. H., Wilson, W. E. C., Porter, K. A., Rifkind, D., Ogden, D. A., Hitchcoock, C. R., Waddell, W. R.: Renal heterotransplantation from baboon to man. Experience with 6 cases. Transplantation2, 752–776 (1964)Google Scholar
  35. Starzl, T. E., Lerner, R. A., Dixon, F. J., Groth, C. G., Brettschneider, L., Terasaki, P. I.: Shwartzman reaction after human renal homotransplantation. N. Engl. J. Med.278, 642–648 (1968)PubMedGoogle Scholar
  36. Steinmüller, D.: Passiv transfer of immunity of skin homografts in rats. Ann. N.Y. Acad. Sci.99, 629–633 (1962)PubMedGoogle Scholar
  37. Stetson, C. A.: The role of humoral antibody in the homograft reaction. Advences Immunol.3, 97–103 (1963)Google Scholar
  38. Thiede, A.: Gefäßtransplantation. Die Bedeutung immunologischer Reaktionsmechanismen. Untersuchungen an standardisierten Ratteninzuchtstammkombinationen. Ergebnisse der Angiologie, Bd. 15. Stuttgart, New York: Schattauer 1977Google Scholar
  39. Thiede, A., Sonntag, H. G., Müller-Ruchholtz, W.: Vessel transplantation in inbred rats. Immunological and histological studies on aorta grafts a cross different histoincompatibility barriers. Proc. Internat. Microsurg. Soc.1, 73–78 (1975)Google Scholar
  40. Tomita, F.: Heart transplantation in the rat. Sapporo Med. J. (Japan)30, 165–168 (1966)Google Scholar
  41. Way, L. W., May, L., Perper, R. J.: Experimental renal heterotransplantation in various species. Fed. Proc.24, 572 (1965)Google Scholar
  42. Williams, G. M., Hume, P. M., Hudson, R. P. jr., Morris, P. J., Kano, K., Milgrom, F.: Hyperacute renal-homograft rejection in man. N. Engl. J. Med.279, 611–618 (1968)PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Ch. Beck
    • 1
    • 2
  • A. Thiede
    • 1
    • 2
  • H. G. Sonntag
    • 1
    • 2
  1. 1.Abt. Allgem. ChirurgieZentrum für Operative Medizin IKielSFB 111 der DFG, Projekt A4
  2. 2.Hygiene-InstitutKlinikum der Chr.-Albrechts-Universität KielGermany

Personalised recommendations